DragonFly On-Line Manual Pages
PEM_READ_BIO_PRIVA... DragonFly Library Functions Manual PEM_READ_BIO_PRIVA...
NAME
PEM_read_bio_PrivateKey, PEM_read_PrivateKey, PEM_write_bio_PrivateKey,
PEM_write_PrivateKey, PEM_write_bio_PKCS8PrivateKey,
PEM_write_PKCS8PrivateKey, PEM_write_bio_PKCS8PrivateKey_nid,
PEM_write_PKCS8PrivateKey_nid, PEM_read_bio_PKCS8, PEM_read_PKCS8,
PEM_write_bio_PKCS8, PEM_write_PKCS8, PEM_read_bio_PKCS8_PRIV_KEY_INFO,
PEM_read_PKCS8_PRIV_KEY_INFO, PEM_write_bio_PKCS8_PRIV_KEY_INFO,
PEM_write_PKCS8_PRIV_KEY_INFO, PEM_read_bio_PUBKEY, PEM_read_PUBKEY,
PEM_write_bio_PUBKEY, PEM_write_PUBKEY, PEM_read_bio_RSAPrivateKey,
PEM_read_RSAPrivateKey, PEM_write_bio_RSAPrivateKey,
PEM_write_RSAPrivateKey, PEM_read_bio_RSAPublicKey,
PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey,
PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY,
PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY,
PEM_read_bio_DSAPrivateKey, PEM_read_DSAPrivateKey,
PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey,
PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY,
PEM_write_DSA_PUBKEY, PEM_read_bio_DSAparams, PEM_read_DSAparams,
PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams,
PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams,
PEM_read_bio_ECPKParameters, PEM_read_ECPKParameters,
PEM_write_bio_ECPKParameters, PEM_write_ECPKParameters,
PEM_read_bio_ECPrivateKey, PEM_read_ECPrivateKey,
PEM_write_bio_ECPrivateKey, PEM_write_ECPrivateKey,
PEM_read_bio_EC_PUBKEY, PEM_read_EC_PUBKEY, PEM_write_bio_EC_PUBKEY,
PEM_write_EC_PUBKEY, PEM_read_bio_X509, PEM_read_X509,
PEM_write_bio_X509, PEM_write_X509, PEM_read_bio_X509_AUX,
PEM_read_X509_AUX, PEM_write_bio_X509_AUX, PEM_write_X509_AUX,
PEM_read_bio_X509_REQ, PEM_read_X509_REQ, PEM_write_bio_X509_REQ,
PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW, PEM_write_X509_REQ_NEW,
PEM_read_bio_X509_CRL, PEM_read_X509_CRL, PEM_write_bio_X509_CRL,
PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7,
PEM_write_bio_PKCS7, PEM_write_PKCS7,
PEM_read_bio_NETSCAPE_CERT_SEQUENCE, PEM_read_NETSCAPE_CERT_SEQUENCE,
PEM_write_bio_NETSCAPE_CERT_SEQUENCE, PEM_write_NETSCAPE_CERT_SEQUENCE --
PEM routines
SYNOPSIS
#include <openssl/pem.h>
EVP_PKEY *
PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, pem_password_cb *cb,
void *u);
EVP_PKEY *
PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, pem_password_cb *cb,
void *u);
int
PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen, pem_password_cb *cb, void *u);
int
PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen, pem_password_cb *cb, void *u);
int
PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x,
const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb,
void *u);
int
PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
char *kstr, int klen, pem_password_cb *cb, void *u);
int
PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
char *kstr, int klen, pem_password_cb *cb, void *u);
int
PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, char *kstr,
int klen, pem_password_cb *cb, void *u);
X509_SIG *
PEM_read_bio_PKCS8(BIO *bp, X509_SIG **x, pem_password_cb *cb, void *u);
X509_SIG *
PEM_read_PKCS8(FILE *fp, X509_SIG **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_PKCS8(BIO *bp, X509_SIG *x);
int
PEM_write_PKCS8(FILE *fp, X509_SIG *x);
PKCS8_PRIV_KEY_INFO *
PEM_read_bio_PKCS8_PRIV_KEY_INFO(BIO *bp, PKCS8_PRIV_KEY_INFO **x,
pem_password_cb *cb, void *u);
PKCS8_PRIV_KEY_INFO *
PEM_read_PKCS8_PRIV_KEY_INFO(FILE *fp, PKCS8_PRIV_KEY_INFO **x,
pem_password_cb *cb, void *u);
int
PEM_write_bio_PKCS8_PRIV_KEY_INFO(BIO *bp, PKCS8_PRIV_KEY_INFO *x);
int
PEM_write_PKCS8_PRIV_KEY_INFO(FILE *fp, PKCS8_PRIV_KEY_INFO *x);
EVP_PKEY *
PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u);
EVP_PKEY *
PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
int
PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
RSA *
PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x, pem_password_cb *cb,
void *u);
RSA *
PEM_read_RSAPrivateKey(FILE *fp, RSA **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen, pem_password_cb *cb, void *u);
int
PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen, pem_password_cb *cb, void *u);
RSA *
PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x, pem_password_cb *cb,
void *u);
RSA *
PEM_read_RSAPublicKey(FILE *fp, RSA **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
int
PEM_write_RSAPublicKey(FILE *fp, RSA *x);
RSA *
PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x, pem_password_cb *cb, void *u);
RSA *
PEM_read_RSA_PUBKEY(FILE *fp, RSA **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
int
PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
DSA *
PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x, pem_password_cb *cb,
void *u);
DSA *
PEM_read_DSAPrivateKey(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen, pem_password_cb *cb, void *u);
int
PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen, pem_password_cb *cb, void *u);
DSA *
PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
DSA *
PEM_read_DSA_PUBKEY(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
int
PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
DSA *
PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
DSA *
PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_DSAparams(BIO *bp, DSA *x);
int
PEM_write_DSAparams(FILE *fp, DSA *x);
DH *
PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
DH *
PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_DHparams(BIO *bp, DH *x);
int
PEM_write_DHparams(FILE *fp, DH *x);
EC_GROUP *
PEM_read_bio_ECPKParameters(BIO *bp, EC_GROUP **x, pem_password_cb *cb,
void *u);
EC_GROUP *
PEM_read_ECPKParameters(FILE *fp, EC_GROUP **x, pem_password_cb *cb,
void *u);
int
PEM_write_bio_ECPKParameters(BIO *bp, const EC_GROUP *x);
int
PEM_write_ECPKParameters(FILE *fp, const EC_GROUP *x);
EC_KEY *
PEM_read_bio_ECPrivateKey(BIO *bp, EC_KEY **key, pem_password_cb *cb,
void *u);
EC_KEY *
PEM_read_ECPrivateKey(FILE *fp, EC_KEY **eckey, pem_password_cb *cb,
void *u);
int
PEM_write_bio_ECPrivateKey(BIO *bp, EC_KEY *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen, pem_password_cb *cb, void *u);
int
PEM_write_ECPrivateKey(FILE *fp, EC_KEY *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen, pem_password_cb *cb, void *u);
EC_KEY *
PEM_read_bio_EC_PUBKEY(BIO *bp, EC_KEY **x, pem_password_cb *cb,
void *u);
EC_KEY *
PEM_read_EC_PUBKEY(FILE *fp, EC_KEY **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_EC_PUBKEY(BIO *bp, EC_KEY *x);
int
PEM_write_EC_PUBKEY(FILE *fp, EC_KEY *x);
X509 *
PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
X509 *
PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_X509(BIO *bp, X509 *x);
int
PEM_write_X509(FILE *fp, X509 *x);
X509 *
PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
X509 *
PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
int
PEM_write_X509_AUX(FILE *fp, X509 *x);
X509_REQ *
PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x, pem_password_cb *cb,
void *u);
X509_REQ *
PEM_read_X509_REQ(FILE *fp, X509_REQ **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
int
PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
int
PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
int
PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
X509_CRL *
PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x, pem_password_cb *cb,
void *u);
X509_CRL *
PEM_read_X509_CRL(FILE *fp, X509_CRL **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
int
PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
PKCS7 *
PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
PKCS7 *
PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
int
PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
int
PEM_write_PKCS7(FILE *fp, PKCS7 *x);
NETSCAPE_CERT_SEQUENCE *
PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE **x,
pem_password_cb *cb, void *u);
NETSCAPE_CERT_SEQUENCE *
PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE **x,
pem_password_cb *cb, void *u);
int
PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x);
int
PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x);
DESCRIPTION
The PEM functions read or write structures in PEM format. In this sense
PEM format is simply base64-encoded data surrounded by header lines.
For more details about the meaning of arguments see the PEM function
arguments section.
Each operation has four functions associated with it. For clarity the
term ``foobar functions'' will be used to collectively refer to the
PEM_read_bio_foobar(), PEM_read_foobar(), PEM_write_bio_foobar(), and
PEM_write_foobar() functions.
The PrivateKey functions read or write a private key in PEM format using
an EVP_PKEY structure. The write routines use "traditional" private key
format and can handle both RSA and DSA private keys. The read functions
can additionally transparently handle PKCS#8 format encrypted and unen-
crypted keys too.
PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a
private key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo
format using PKCS#5 v2.0 password based encryption algorithms. The enc
argument specifies the encryption algorithm to use: unlike all other PEM
routines, the encryption is applied at the PKCS#8 level and not in the
PEM headers. If enc is NULL, then no encryption is used and a PKCS#8
PrivateKeyInfo structure is used instead.
PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo. How-
ever they use PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The
algorithm to use is specified in the nid parameter and should be the NID
of the corresponding OBJECT IDENTIFIER.
The PKCS8 functions process an encrypted private key using an X509_SIG
structure and the d2i_X509_SIG(3) function.
The PKCS8_PRIV_KEY_INFO functions process a private key using a
PKCS8_PRIV_KEY_INFO structure.
The PUBKEY functions process a public key using an EVP_PKEY structure.
The public key is encoded as an ASN.1 SubjectPublicKeyInfo structure.
The RSAPrivateKey functions process an RSA private key using an RSA
structure. They handle the same formats as the PrivateKey functions, but
an error occurs if the private key is not RSA.
The RSAPublicKey functions process an RSA public key using an RSA struc-
ture. The public key is encoded using a PKCS#1 RSAPublicKey structure.
The RSA_PUBKEY functions also process an RSA public key using an RSA
structure. However the public key is encoded using an ASN.1
SubjectPublicKeyInfo structure and an error occurs if the public key is
not RSA.
The DSAPrivateKey functions process a DSA private key using a DSA struc-
ture. They handle the same formats as the PrivateKey functions but an
error occurs if the private key is not DSA.
The DSA_PUBKEY functions process a DSA public key using a DSA structure.
The public key is encoded using an ASN.1 SubjectPublicKeyInfo structure
and an error occurs if the public key is not DSA.
The DSAparams functions process DSA parameters using a DSA structure.
The parameters are encoded using a Dss-Parms structure as defined in RFC
2459.
The DHparams functions process DH parameters using a DH structure. The
parameters are encoded using a PKCS#3 DHparameter structure.
The ECPKParameters functions process EC parameters using an EC_GROUP
structure and the d2i_ECPKParameters(3) function.
The ECPrivateKey functions process an EC private key using an EC_KEY
structure.
The EC_PUBKEY functions process an EC public key using an EC_KEY struc-
ture.
The X509 functions process an X509 certificate using an X509 structure.
They will also process a trusted X509 certificate but any trust settings
are discarded.
The X509_AUX functions process a trusted X509 certificate using an X509
structure.
The X509_REQ and X509_REQ_NEW functions process a PKCS#10 certificate
request using an X509_REQ structure. The X509_REQ write functions use
CERTIFICATE REQUEST in the header whereas the X509_REQ_NEW functions use
NEW CERTIFICATE REQUEST (as required by some CAs). The X509_REQ read
functions will handle either form so there are no X509_REQ_NEW read func-
tions.
The X509_CRL functions process an X509 CRL using an X509_CRL structure.
The PKCS7 functions process a PKCS#7 ContentInfo using a PKCS7 structure.
The NETSCAPE_CERT_SEQUENCE functions process a Netscape Certificate
Sequence using a NETSCAPE_CERT_SEQUENCE structure.
The old PrivateKey write routines are retained for compatibility. New
applications should write private keys using the
PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
because they are more secure (they use an iteration count of 2048 whereas
the traditional routines use a count of 1) unless compatibility with
older versions of OpenSSL is important.
The PrivateKey read routines can be used in all applications because they
handle all formats transparently.
PEM function arguments
The PEM functions have many common arguments.
The bp parameter specifies the BIO to read from or write to.
The fp parameter specifies the FILE pointer to read from or write to.
The PEM read functions all take a pointer to pointer argument x and
return a pointer of the same type. If x is NULL, then the parameter is
ignored. If x is not NULL but *x is NULL, then the structure returned
will be written to *x. If neither x nor *x are NULL, then an attempt is
made to reuse the structure at *x, but see the BUGS and EXAMPLES sec-
tions. Irrespective of the value of x, a pointer to the structure is
always returned, or NULL if an error occurred.
The PEM functions which write private keys take an enc parameter, which
specifies the encryption algorithm to use. Encryption is done at the PEM
level. If this parameter is set to NULL, then the private key is written
in unencrypted form.
The cb argument is the callback to use when querying for the passphrase
used for encrypted PEM structures (normally only private keys).
For the PEM write routines, if the kstr parameter is not NULL, then klen
bytes at kstr are used as the passphrase and cb is ignored.
If the cb parameter is set to NULL and the u parameter is not NULL, then
the u parameter is interpreted as a null terminated string to use as the
passphrase. If both cb and u are NULL, then the default callback routine
is used, which will typically prompt for the passphrase on the current
terminal with echoing turned off.
The default passphrase callback is sometimes inappropriate (for example
in a GUI application) so an alternative can be supplied. The callback
routine has the following form:
int cb(char *buf, int size, int rwflag, void *u)
buf is the buffer to write the passphrase to. size is the maximum length
of the passphrase, i.e. the size of buf. rwflag is a flag which is set
to 0 when reading and 1 when writing. A typical routine will ask the
user to verify the passphrase (for example by prompting for it twice) if
rwflag is 1. The u parameter has the same value as the u parameter
passed to the PEM routine. It allows arbitrary data to be passed to the
callback by the application (for example a window handle in a GUI appli-
cation). The callback must return the number of characters in the
passphrase or 0 if an error occurred.
PEM encryption format
This old PrivateKey routines use a non-standard technique for encryption.
The private key (or other data) takes the following form:
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89
...base64 encoded data...
-----END RSA PRIVATE KEY-----
The line beginning with ``DEK-Info'' contains two comma separated pieces
of information: the encryption algorithm name as used by
EVP_get_cipherbyname(3) and an 8-byte salt encoded as a set of hexadeci-
mal digits.
After this is the base64-encoded encrypted data.
The encryption key is determined using EVP_BytesToKey(3), using the salt
and an iteration count of 1. The IV used is the value of the salt and
*not* the IV returned by EVP_BytesToKey(3).
RETURN VALUES
The read routines return either a pointer to the structure read or NULL
if an error occurred.
The write routines return 1 for success or 0 for failure.
EXAMPLES
Although the PEM routines take several arguments, in almost all applica-
tions most of them are set to 0 or NULL.
Read a certificate in PEM format from a BIO:
X509 *x;
x = PEM_read_bio_X509(bp, NULL, 0, NULL);
if (x == NULL) {
/* Error */
}
Alternative method:
X509 *x = NULL;
if (!PEM_read_bio_X509(bp, &x, 0, NULL)) {
/* Error */
}
Write a certificate to a BIO:
if (!PEM_write_bio_X509(bp, x)) {
/* Error */
}
Write an unencrypted private key to a FILE:
if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL)) {
/* Error */
}
Write a private key (using traditional format) to a BIO using triple DES
encryption; the pass phrase is prompted for:
if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(),
NULL, 0, 0, NULL)) {
/* Error */
}
Write a private key (using PKCS#8 format) to a BIO using triple DES
encryption, using the pass phrase "hello":
if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(),
NULL, 0, 0, "hello")) {
/* Error */
}
Read a private key from a BIO using the pass phrase "hello":
key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello");
if (key == NULL) {
/* Error */
}
Read a private key from a BIO using a pass phrase callback:
key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
if (key == NULL) {
/* Error */
}
Skeleton pass phrase callback:
int
pass_cb(char *buf, int size, int rwflag, void *u)
{
int len;
char *tmp;
/* We'd probably do something else if 'rwflag' is 1 */
printf("Enter pass phrase for \"%s\"\n", u);
/* get pass phrase, length 'len' into 'tmp' */
tmp = "hello";
len = strlen(tmp);
if (len == 0)
return 0;
/* if too long, truncate */
if (len > size)
len = size;
memcpy(buf, tmp, len);
return len;
}
SEE ALSO
BIO_new(3), PEM_bytes_read_bio(3), PEM_read(3)
HISTORY
PEM_read_X509() and PEM_write_X509() appeared in SSLeay 0.4 or earlier.
PEM_read_X509_REQ(), PEM_write_X509_REQ(), PEM_read_X509_CRL(), and
PEM_write_X509_CRL() first appeared in SSLeay 0.4.4.
PEM_read_RSAPrivateKey(), PEM_write_RSAPrivateKey(), PEM_read_DHparams(),
PEM_write_DHparams(), PEM_read_PKCS7(), and PEM_write_PKCS7() first
appeared in SSLeay 0.5.1. PEM_read_bio_PrivateKey(),
PEM_read_PrivateKey(), PEM_read_bio_RSAPrivateKey(),
PEM_write_bio_RSAPrivateKey(), PEM_read_bio_DSAPrivateKey(),
PEM_read_DSAPrivateKey(), PEM_write_bio_DSAPrivateKey(),
PEM_write_DSAPrivateKey(), PEM_read_bio_DHparams(),
PEM_write_bio_DHparams(), PEM_read_bio_X509(), PEM_write_bio_X509(),
PEM_read_bio_X509_REQ(), PEM_write_bio_X509_REQ(),
PEM_read_bio_X509_CRL(), PEM_write_bio_X509_CRL(), PEM_read_bio_PKCS7(),
and PEM_write_bio_PKCS7() first appeared in SSLeay 0.6.0.
PEM_write_bio_PrivateKey(), PEM_write_PrivateKey(),
PEM_read_bio_DSAparams(), PEM_read_DSAparams(),
PEM_write_bio_DSAparams(), and PEM_write_DSAparams() first appeared in
SSLeay 0.8.0. PEM_read_bio_RSAPublicKey(), PEM_read_RSAPublicKey(),
PEM_write_bio_RSAPublicKey(), and PEM_write_RSAPublicKey() first appeared
in SSLeay 0.8.1. All these functions have been available since
OpenBSD 2.4.
PEM_write_bio_PKCS8PrivateKey(), PEM_write_PKCS8PrivateKey(),
PEM_read_bio_PKCS8(), PEM_read_PKCS8(), PEM_write_bio_PKCS8(),
PEM_write_PKCS8(), PEM_read_bio_PKCS8_PRIV_KEY_INFO(),
PEM_read_PKCS8_PRIV_KEY_INFO(), PEM_write_bio_PKCS8_PRIV_KEY_INFO(),
PEM_write_PKCS8_PRIV_KEY_INFO(), PEM_read_bio_NETSCAPE_CERT_SEQUENCE(),
PEM_read_NETSCAPE_CERT_SEQUENCE(),
PEM_write_bio_NETSCAPE_CERT_SEQUENCE(), and
PEM_write_NETSCAPE_CERT_SEQUENCE() first appeared in OpenSSL 0.9.4 and
have been available since OpenBSD 2.6.
PEM_write_bio_PKCS8PrivateKey_nid(), PEM_write_PKCS8PrivateKey_nid(),
PEM_read_bio_PUBKEY(), PEM_read_PUBKEY(), PEM_write_bio_PUBKEY(),
PEM_write_PUBKEY(), PEM_read_bio_RSA_PUBKEY(), PEM_read_RSA_PUBKEY(),
PEM_write_bio_RSA_PUBKEY(), PEM_write_RSA_PUBKEY(),
PEM_read_bio_DSA_PUBKEY(), PEM_read_DSA_PUBKEY(),
PEM_write_bio_DSA_PUBKEY(), PEM_write_DSA_PUBKEY(),
PEM_write_bio_X509_REQ_NEW(), PEM_write_X509_REQ_NEW(),
PEM_read_bio_X509_AUX(), PEM_read_X509_AUX(), PEM_write_bio_X509_AUX(),
and PEM_write_X509_AUX() first appeared in OpenSSL 0.9.5 and have been
available since OpenBSD 2.7.
PEM_read_bio_ECPKParameters(), PEM_read_ECPKParameters(),
PEM_write_bio_ECPKParameters(), PEM_write_ECPKParameters(),
PEM_read_bio_ECPrivateKey(), PEM_read_ECPrivateKey(),
PEM_write_bio_ECPrivateKey(), PEM_write_ECPrivateKey(),
PEM_read_bio_EC_PUBKEY(), PEM_read_EC_PUBKEY(),
PEM_write_bio_EC_PUBKEY(), and PEM_write_EC_PUBKEY() first appeared in
OpenSSL 0.9.8 and have been available since OpenBSD 4.5.
CAVEATS
A frequent cause of problems is attempting to use the PEM routines like
this:
X509 *x;
PEM_read_bio_X509(bp, &x, 0, NULL);
This is a bug because an attempt will be made to reuse the data at x,
which is an uninitialised pointer.
BUGS
The PEM read routines in some versions of OpenSSL will not correctly re-
use an existing structure. Therefore
PEM_read_bio_X509(bp, &x, 0, NULL);
where x already contains a valid certificate may not work, whereas
X509_free(x);
x = PEM_read_bio_X509(bp, NULL, 0, NULL);
is guaranteed to work.
DragonFly 5.5 March 27, 2018 DragonFly 5.5