DragonFly On-Line Manual Pages
CTIME(3) DragonFly Library Functions Manual CTIME(3)
NAME
asctime, asctime_r, ctime, ctime_r, difftime, gmtime, gmtime_r,
localtime, localtime_r, mktime, timegm -- transform binary date and time
values
LIBRARY
Standard C Library (libc, -lc)
SYNOPSIS
#include <time.h>
extern char *tzname[2];
char *
ctime(const time_t *clock);
double
difftime(time_t time1, time_t time0);
char *
asctime(const struct tm *tm);
struct tm *
localtime(const time_t *clock);
struct tm *
gmtime(const time_t *clock);
time_t
mktime(struct tm *tm);
time_t
timegm(struct tm *tm);
char *
ctime_r(const time_t *clock, char *buf);
struct tm *
localtime_r(const time_t * restrict clock, struct tm * restrict result);
struct tm *
gmtime_r(const time_t * restrict clock, struct tm * restrict result);
char *
asctime_r(const struct tm * restrict tm, char * restrict buf);
DESCRIPTION
The functions ctime(), gmtime() and localtime() all take as an argument a
time value representing the time in seconds since the Epoch (00:00:00
UTC, January 1, 1970; see time(3)).
The function localtime() converts the time value pointed at by clock, and
returns a pointer to a ``struct tm'' (described below) which contains the
broken-out time information for the value after adjusting for the current
time zone (and any other factors such as Daylight Saving Time). Time
zone adjustments are performed as specified by the TZ environment
variable (see tzset(3)). The function localtime() uses tzset(3) to
initialize time conversion information if tzset(3) has not already been
called by the process.
After filling in the tm structure, localtime() sets the tm_isdst'th
element of tzname to a pointer to an ASCII string that is the time zone
abbreviation to be used with localtime()'s return value.
The function gmtime() similarly converts the time value, but without any
time zone adjustment, and returns a pointer to a tm structure (described
below).
The ctime() function adjusts the time value for the current time zone in
the same manner as localtime(), and returns a pointer to a string of the
form:
Thu Nov 24 18:22:48 1986\n\0
Years requiring fewer than four characters are padded with leading
zeroes. For years longer than four characters, the string is of the form
Thu Nov 24 18:22:48 81986\n\0
with five spaces before the year. These unusual formats are designed to
make it less likely that older software that expects exactly 26 bytes of
output will mistakenly output misleading values for out-of-range years.
The ctime_r() function provides the same functionality as ctime() except
the caller must provide the output buffer buf to store the result, which
must be at least 26 characters long. The localtime_r() and gmtime_r()
functions provide the same functionality as localtime() and gmtime()
respectively, except the caller must provide the output buffer result.
The asctime() function converts the broken down time in the structure tm
pointed at by *tm to the form shown in the example above.
The asctime_r() function provides the same functionality as asctime()
except the caller provide the output buffer buf to store the result,
which must be at least 26 characters long.
The functions mktime() and timegm() convert the broken-down time in the
structure pointed to by tm into a time value with the same encoding as
that of the values returned by the time(3) function (that is, seconds
from the Epoch, UTC). The mktime() function interprets the input
structure according to the current timezone setting (see tzset(3)). The
timegm() function interprets the input structure as representing
Universal Coordinated Time (UTC).
The original values of the tm_wday and tm_yday components of the
structure are ignored, and the original values of the other components
are not restricted to their normal ranges, and will be normalized if
needed. For example, October 40 is changed into November 9, a tm_hour of
-1 means 1 hour before midnight, tm_mday of 0 means the day preceding the
current month, and tm_mon of -2 means 2 months before January of tm_year.
(A positive or zero value for tm_isdst causes mktime() to presume
initially that summer time (for example, Daylight Saving Time) is or is
not in effect for the specified time, respectively. A negative value for
tm_isdst causes the mktime() function to attempt to divine whether summer
time is in effect for the specified time; in this case it does not use a
consistent rule and may give a different answer when later presented with
the same argument. The tm_isdst and tm_gmtoff members are forced to zero
by timegm().)
On successful completion, the values of the tm_wday and tm_yday
components of the structure are set appropriately, and the other
components are set to represent the specified calendar time, but with
their values forced to their normal ranges; the final value of tm_mday is
not set until tm_mon and tm_year are determined. The mktime() function
returns the specified calendar time; if the calendar time cannot be
represented, it returns -1;
The difftime() function returns the difference between two calendar
times, (time1 - time0), expressed in seconds.
External declarations as well as the tm structure definition are in the
<time.h> include file. The tm structure includes at least the following
fields:
int tm_sec; /* seconds (0 - 60) */
int tm_min; /* minutes (0 - 59) */
int tm_hour; /* hours (0 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tm_year; /* year - 1900 */
int tm_wday; /* day of week (Sunday = 0) */
int tm_yday; /* day of year (0 - 365) */
int tm_isdst; /* is summer time in effect? */
char *tm_zone; /* abbreviation of timezone name */
long tm_gmtoff; /* offset from UT in seconds */
The field tm_isdst is non-zero if summer time is in effect.
The field tm_gmtoff is the offset (in seconds) of the time represented
from UT, with positive values indicating east of the Prime Meridian. The
field's name is derived from Greenwich Mean Time, a precursor of UT.
COMPATIBILITY
The asctime() and ctime() functions behave strangely for years before
1000 or after 9999. The 1989 and 1999 editions of the C Standard say
that years from -99 through 999 are converted without extra spaces, but
this conflicts with longstanding tradition and with this implementation.
Traditional implementations of these two functions are restricted to
years in the range 1900 through 2099. To avoid this portability mess,
new programs should use strftime(3) instead.
SEE ALSO
date(1), gettimeofday(2), getenv(3), strftime(3), time(3), tzset(3),
tzfile(5)
STANDARDS
The asctime(), ctime(), difftime(), gmtime(), localtime(), and mktime()
functions conform to ISO/IEC 9899:1990 (``ISO C90''), and conform to
ISO/IEC 9945-1:1996 (``POSIX.1'') provided the selected local timezone
does not contain a leap-second table (see zic(8)).
The asctime_r(), ctime_r(), gmtime_r(), and localtime_r() functions are
expected to conform to ISO/IEC 9945-1:1996 (``POSIX.1'') (again provided
the selected local timezone does not contain a leap-second table).
The timegm() function is not specified by any standard; its function
cannot be completely emulated using the standard functions described
above.
HISTORY
This manual page is derived from the time package contributed to Berkeley
by Arthur Olson and which appeared in 4.3BSD.
BUGS
Except for difftime(), mktime(), and the _r() variants of the other
functions, these functions leaves their result in an internal static
object and return a pointer to that object. Subsequent calls to these
function will modify the same object.
The C Standard provides no mechanism for a program to modify its current
local timezone setting, and the POSIX-standard method is not reentrant.
(However, thread-safe implementations are provided in the POSIX threaded
environment.)
The tm_zone field of a returned tm structure points to a static array of
characters, which will also be overwritten by any subsequent calls (as
well as by subsequent calls to tzset(3) and tzsetwall(3)).
Use of the external variable tzname is discouraged; the tm_zone entry in
the tm structure is preferred.
DragonFly 5.1 February 22, 2018 DragonFly 5.1