DragonFly On-Line Manual Pages
SG3_UTILS(8) SG3_UTILS SG3_UTILS(8)
NAME
sg3_utils - a package of utilities for sending SCSI commands
SYNOPSIS
sg_* [--enumerate] [--help] [--hex] [--maxlen=LEN] [--raw] [--verbose]
[--version] [OTHER_OPTIONS] DEVICE
DESCRIPTION
sg3_utils is a package of utilities that send SCSI commands to the
given DEVICE via a SCSI pass through interface provided by the host
operating system.
The names of all utilities start with "sg" and most start with "sg_"
often followed by the name, or a shortening of the name, of the SCSI
command that they send. For example the "sg_verify" utility sends the
SCSI VERIFY command. A mapping between SCSI commands and the sg3_utils
utilities that issue them is shown in the COVERAGE file. The sg_raw
utility can be used to send an arbitrary SCSI command (supplied on the
command line) to the given DEVICE.
sg_decode_sense can be used to decode SCSI sense data given on the
command line or in a file. sg_raw -vvv will output the T10 name of a
given SCSI CDB which is most often 16 bytes or less in length.
SCSI draft standards can be found at http://www.t10.org . The standards
themselves can be purchased from ANSI and other standards
organizations. A good overview of various SCSI standards can be seen
in http://www.t10.org/scsi-3.htm with the SCSI command sets in the
upper part of the diagram. SCSI commands in common with all device
types can be found in SPC of which SPC-4 is the latest major version.
Block device specific commands (e.g. as used by disks) are in SBC,
those for tape drives in SSC and those for CD/DVD/BD drives in MMC.
It is becoming more common to control ATA disks with the SCSI command
set. This involves the translation of SCSI commands to their
corresponding ATA equivalents (and that is an imperfect mapping in some
cases). The relevant standard is called SCSI to ATA Translation (SAT
and SAT-2 are now standards at INCITS(ANSI) and ISO while SAT-3 is at
the draft stage). The logic to perform the command translation is often
called a SAT Layer or SATL and may be within an operating system, in
host bus adapter firmware or in an external device (e.g. associated
with a SAS expander). See http://www.t10.org for more information.
There is some support for SCSI tape devices but not for their basic
commands. The reader is referred to the "mt" utility.
There are two generations of command line option usage. The newer
utilities (written since July 2004) use the getopt_long() function to
parse command line options. With that function, each option has two
representations: a short form (e.g. '-v') and a longer form (e.g.
'--verbose'). If an argument is required then it follows a space
(optionally) in the short form and a "=" in the longer form (e.g. in
the sg_verify utility '-l 2a6h' and '--lba=2a6h' are equivalent). Note
that with getopt_long(), short form options can be elided, for example:
'-all' is equivalent to '-a -l -l'. The DEVICE argument may appear
after, between or prior to any options.
The older utilities, such as sg_inq, had individual command line
processing code typically based on a single "-" followed by one or more
characters. If an argument is needed then it follows a "=" (e.g.
'-p=1f' in sg_modes with its older interface). Various options can be
elided as long as it is not ambiguous (e.g. '-vv' to increase the
verbosity).
Over time the command line interface of these older utilities became
messy and overloaded with options. So in sg3_utils version 1.23 the
command line interface of these older utilities was altered to have
both a cleaner getopt_long() interface and their older interface for
backward compatibility. By default these older utilities use their
getopt_long() based interface. That can be overridden by defining the
SG3_UTILS_OLD_OPTS environment variable or using '-O' or '--old' as the
first command line option. The man pages of the older utilities
documents the details.
Several sg3_utils utilities are based on the Unix dd command (e.g.
sg_dd) and permit copying data at the level of SCSI READ and WRITE
commands. sg_dd is tightly bound to Linux and hence is not ported to
other OSes. A more generic utility (than sg_dd) called ddpt in a
package of the same name has been ported to other OSes.
LINUX DEVICE NAMING
Most disk block devices have names like /dev/sda, /dev/sdb, /dev/sdc,
etc. SCSI disks in Linux have always had names like that but in recent
Linux kernels it has become more common for many other disks (including
SATA disks and USB storage devices) to be named like that. Partitions
within a disk are specified by a number appended to the device name,
starting at 1 (e.g. /dev/sda1 ).
Tape drives are named /dev/st<num> or /dev/nst<num> where <num> starts
at zero. Additionally one letter from this list: "lma" may be appended
to the name. CD, DVD and BD readers (and writers) are named
/dev/sr<num> where <num> start at zero. There are less used SCSI device
type names, the dmesg and the lsscsi commands may help to find if any
are attached to a running system.
There is also a SCSI device driver which offers alternate generic
access to SCSI devices. It uses names of the form /dev/sg<num> where
<num> starts at zero. The "lsscsi -g" command may be useful in finding
these and which generic name corresponds to a device type name (e.g.
/dev/sg2 may correspond to /dev/sda). In the lk 2.6 series a block SCSI
generic driver was introduced and its names are of the form
/dev/bsg/<h:c:t:l> where h, c, t and l are numbers. Again see the
lsscsi command to find the correspondence between that SCSI tuple (i.e.
<h:c:t:l>) and alternate device names.
Prior to the Linux kernel 2.6 series these utilities could only use
generic device names (e.g. /dev/sg1 ). In almost all cases in the Linux
kernel 2.6 series, any device name can be used by these utilities.
Very little has changed in Linux device naming in the lk 3 series.
WINDOWS DEVICE NAMING
Storage and related devices can have several device names in Windows.
Probably the most common in the volume name (e.g. "D:"). There are also
a "class" device names such as "PhysicalDrive<n>", "CDROM<n>" and
"TAPE<n>". <n> is an integer starting at 0 allocated in ascending order
as devices are discovered (and sometimes rediscovered).
Some storage devices have a SCSI lower level device name which starts
with a SCSI (pseudo) adapter name of the form "SCSI<n>:". To this is
added sub-addressing in the form of a "bus" number, a "target"
identifier and a LUN (Logical Unit Number). The "bus" number is also
known as a "PathId". These are assembled to form a device name of the
form: "SCSI<n>:<bus>,<target>,<lun>". The trailing ",<lun>" may be
omitted in which case a LUN of zero is assumed. This lower level device
name cannot often be used directly since Windows blocks attempts to use
it if a class driver has "claimed" the device. There are SCSI device
types (e.g. Automation/Drive interface type) for which there is no
class driver. At least two transports ("bus types" in Windows jargon):
USB and IEEE 1394 do not have a "scsi" device names of this form.
In keeping with DOS file system conventions, the various device names
can be given in upper, lower or mixed case. Since "PhysicalDrive<n>" is
tedious to write, a shortened form of "PD<n>" is permitted by all
utilities in this package.
A single device (e.g. a disk) can have many device names. For example:
"PD0" can also be "C:", "D:" and "SCSI0:0,1,0". The two volume names
reflect that the disk has two partitions on it. Disk partitions that
are not recognized by Windows are not usually given a volume name.
However Vista does show a volume name for a disk which has no
partitions recognized by it and when selected invites the user to
format it (which may be rather unfriendly to other OSes).
These utilities assume a given device name is in the Win32 device
namespace. To make that explicit "\\.\" can be prepended to the device
names mentioned in this section. Beware that backslash is an escape
character in Unix like shells and the C programming language. In a
shell like Msys (from MinGW) each backslash may need to be typed twice.
The sg_scan utility within this package lists out Windows device names
in a form that is suitable for other utilities in this package to use.
FREEBSD DEVICE NAMING
SCSI disks have block names of the form /dev/da<num> where <num> is an
integer starting at zero. The "da" is replaced by "sa" for SCSI tape
drives and "cd" for SCSI CD/DVD/BD drives. Each SCSI device has a
corresponding pass-through device name of the form /dev/pass<num> where
<num> is an integer starting at zero. The "camcontrol devlist" command
may be useful for finding out which SCSI device names are available and
the correspondence between class and pass-through names.
SOLARIS DEVICE NAMING
SCSI device names below the /dev directory have a form like: c5t4d3s2
where the number following "c" is the controller (HBA) number, the
number following "t" is the target number (from the SCSI parallel
interface days) and the number following "d" is the LUN. Following the
"s" is the slice number which is related to a partition and by
convention "s2" is the whole disk.
OpenSolaris also has a c5t4d3p2 form where the number following the "p"
is the partition number apart from "p0" which is the whole disk. So a
whole disk may be referred to as either c5t4d3, c5t4d3s2 or c5t4d3p0 .
And these device names are duplicated in the /dev/dsk and /dev/rdsk
directories. The former is the block device name and the latter is for
"raw" (or char device) access which is what sg3_utils needs. So in
OpenSolaris something of the form 'sg_inq /dev/rdsk/c5t4d3p0' should
work. If it doesn't work then add a '-vvv' option for more debug
information. Trying this form 'sg_inq /dev/dsk/c5t4d3p0' (note "rdsk"
changed to "dsk") will result in an "inappropriate ioctl for device"
error.
The device names within the /dev directory are typically symbolic links
to much longer topological names in the /device directory. In Solaris
cd/dvd/bd drives seem to be treated as disks and so are found in the
/dev/rdsk directory. Tape drives appear in the /dev/rmt directory.
There is also a sgen (SCSI generic) driver which by default does not
attach to any device. See the /kernel/drv/sgen.conf file to control
what is attached. Any attached device will have a device name of the
form /dev/scsi/c5t4d3 .
Listing available SCSI devices in Solaris seems to be a challenge. "Use
the 'format' command" advice works but seems a very dangerous way to
list devices. [It does prompt again before doing any damage.] 'devfsadm
-Cv' cleans out the clutter in the /dev/rdsk directory, only leaving
what is "live". The "cfgadm -v" command looks promising.
EXIT STATUS
To aid scripts that call these utilities, the exit status is set to
indicate success (0) or failure (1 or more). Note that some of the
lower values correspond to the SCSI sense key values. The exit status
values are:
0 success
1 syntax error. Either illegal command line options, options with
bad arguments or a combination of options that is not permitted.
2 the DEVICE reports that it is not ready for the operation
requested. The DEVICE may be in the process of becoming ready
(e.g. spinning up but not at speed) so the utility may work
after a wait. In Linux the DEVICE may be temporarily blocked
while error recovery is taking place.
3 the DEVICE reports a medium or hardware error (or a blank
check). For example an attempt to read a corrupted block on a
disk will yield this value.
5 the DEVICE reports an "illegal request" with an additional sense
code other than "invalid command operation code". This is often
a supported command with a field set requesting an unsupported
capability. For commands that require a "service action" field
this value can indicate that the command with that service
action value is not supported.
6 the DEVICE reports a "unit attention" condition. This usually
indicates that something unrelated to the requested command has
occurred (e.g. a device reset) potentially before the current
SCSI command was sent. The requested command has not been
executed by the device. Note that unit attention conditions are
usually only reported once by a device.
7 the DEVICE reports a "data protect" sense key. This implies some
mechanism has blocked writes (or possibly all access to the
media).
9 the DEVICE reports an illegal request with an additional sense
code of "invalid command operation code" which means that it
doesn't support the requested command.
10 the DEVICE reports a "copy aborted". This implies another
command or device problem has stopped a copy operation. The
EXTENDED COPY family of commands (including WRITE USING TOKEN)
may return this sense key.
11 the DEVICE reports an aborted command. In some cases aborted
commands can be retried immediately (e.g. if the transport
aborted the command due to congestion).
14 the DEVICE reports a miscompare sense key. VERIFY and COMPARE
AND WRITE commands may report this.
15 the utility is unable to open, close or use the given DEVICE or
some other file. The given file name could be incorrect or there
may be permission problems. Adding the '-v' option may give more
information.
20 the DEVICE reports it has a check condition but "no sense" and
non-zero information in its additional sense codes. Some polling
commands (e.g. REQUEST SENSE) can receive this response. There
may be useful information in the sense data such as a progress
indication.
21 the DEVICE reports a "recovered error". The requested command
was successful. Most likely a utility will report a recovered
error to stderr and continue, probably leaving the utility with
an exit status of 0 .
24 the DEVICE reports a SCSI status of "reservation conflict". This
means access to the DEVICE with the current command has been
blocked because another machine (HBA or SCSI "initiator") holds
a reservation on this DEVICE. On modern SCSI systems this is
related to the use of the PERSISTENT RESERVATION family of
commands.
33 the command sent to DEVICE has timed out.
40 the command sent to DEVICE has received an "aborted command"
sense key with an additional sense code of 0x10. This group is
related to problems with protection information (PI or DIF). For
example this error may occur when reading a block on a drive
that has never been written (or is unmapped) if that drive was
formatted with type 1, 2 or 3 protection.
97 a SCSI command response failed sanity checks.
98 the DEVICE reports it has a check condition but the error
doesn't fit into any of the above categories.
99 any errors that can't be categorized into values 1 to 98 may
yield this value. This includes transport and operating system
errors after the command has been sent to the device.
126 the utility was found but could not be executed. That might
occur if the executable does not have execute permissions.
127 This is the exit status for utility not found. That might occur
when a script calls a utility in this package but the PATH
environment variable has not been properly set up, so the script
cannot find the executable.
128 * <signum>
If a signal kills a utility then the exit status is 128 plus the
signal number. For example if a segmentation fault occurs then a
utility is typically killed by SIGSEGV which according to 'man 7
signal' has an associated signal number of 11; so the exit
status will be 139 .
255 the utility tried to yield an exit status of 255 or larger. That
should not happen; given here for completeness.
Most of the error conditions reported above will be repeatable (an
example of one that is not is "unit attention") so the utility can be
run again with the '-v' option (or several) to obtain more information.
COMMON OPTIONS
Arguments to long options are mandatory for short options as well. In
the short form an argument to an option uses zero or more spaces as a
separator (i.e. the short form does not use "=" as a separator).
If an option takes a numeric argument then that argument is assumed to
be decimal unless otherwise indicated (e.g. with a leading "0x", a
trailing "h" or as noted in the usage message).
Some options are used uniformly in most of the utilities in this
package. Those options are listed below. Note that there are some
exceptions.
-e, --enumerate
some utilities (e.g. sg_ses and sg_vpd) store a lot of
information in internal tables. This option will output that
information in some readable form (e.g. sorted by an acronym or
by page number) then exit. Note that with this option DEVICE is
ignored (as are most other options) and no SCSI IO takes place,
so the invoker does not need any elevated permissions.
-h, -?, --help
output the usage message then exit. In a few older utilities the
'-h' option requests hexadecimal output. In these cases the '-?'
option will output the usage message then exit.
-H, --hex
for SCSI commands that yield a non-trivial response, print out
that response in ASCII hexadecimal. To produce hexadecimal that
can be parsed by other utilities (e.g. without a relative
address to the left and without trailing ASCII) use this option
three or four times.
-m, --maxlen=LEN
several important SCSI commands (e.g. INQUIRY and MODE SENSE)
have response lengths that vary depending on many factors, only
some of which these utilities take into account. The maximum
response length is typically specified in the 'allocation
length' field of the cdb. In the absence of this option, several
utilities use a default allocation length (sometimes recommended
in the SCSI draft standards) or a "double fetch" strategy. See
sg_logs(8) for its description of a "double fetch" strategy.
These techniques are imperfect and in the presence of faulty
SCSI targets can cause problems (e.g. some USB mass storage
devices freeze if they receive an INQUIRY allocation length
other than 36). Also use of this option disables any "double
fetch" strategy that may have otherwise been used.
-r, --raw
for SCSI commands that yield a non-trivial response, output that
response in binary to stdout. If any error messages or warning
are produced they are usually sent to stderr so as to not
interfere with the output from this option.
Some utilities that consume data to send to the DEVICE along
with the SCSI command, use this option. This option may indicate
that binary data can be read from stdin or a nominated file.
-v, --verbose
increase the level of verbosity, (i.e. debug output). Can be
used multiple times to further increase verbosity. The
additional output is usually sent to stderr.
-V, --version
print the version string and then exit. Each utility has its own
version number and date of last code change.
NUMERIC ARGUMENTS
Many utilities have command line options that take numeric arguments.
These numeric arguments can be large values (e.g. a logical block
address (LBA) on a disk) and can be inconvenient to enter in the
default decimal representation. So various other representations are
permitted.
Multiplicative suffixes are accepted. They are one, two or three letter
strings appended directly after the number to which they apply:
c C *1
w W *2
b B *512
k K KiB *1024
KB *1000
m M MiB *1048576
MB *1000000
g G GiB *(2^30)
GB *(10^9)
t T TiB *(2^40)
TB *(10^12)
p P PiB *(2^50)
PB *(10^15)
An example is "2k" for 2048. The large tera and peta suffixes are only
available for numeric arguments that might require 64 bits to represent
internally.
A suffix of the form "x<n>" multiplies the leading number by <n>. An
example is "2x33" for "66". The leading number cannot be "0" (zero) as
that would be interpreted as a hexadecimal number (see below).
These multiplicative suffixes are compatible with GNU's dd command
(since 2002) which claims compliance with SI and with IEC 60027-2.
Alternatively numerical arguments can be given in hexadecimal. There
are two syntaxes. The number can be preceded by either "0x" or "0X" as
found in the C programming language. The second hexadecimal
representation is a trailing "h" or "H" as found in (storage)
standards. When hex numbers are given, multipliers cannot be used. For
example the decimal value "256" can be given as "0x100" or "100h".
MICROCODE AND FIRMWARE
There are two standardized methods for downloading microcode (i.e.
device firmware) to a SCSI device. The more general way is with the
SCSI WRITE BUFFER command, see the sg_write_buffer utility. SCSI
enclosures have their own method based on the Download microcode
control/status diagnostic page, see the sg_ses_microcode utility.
SCRIPTS, EXAMPLES and UTILS
There are several bash shell scripts in the 'scripts' subdirectory that
invoke compiled utilities (e.g. sg_readcap). Several of the scripts
start with 'scsi_' rather than 'sg_'. One purpose of these scripts is
to call the same utility (e.g. sg_readcap) on multiple devices. Most of
the basic compiled utilities only allow one device as an argument. Some
distributions install these scripts in a more visible directory (e.g.
/usr/bin). Some of these scripts have man page entries. See the README
file in the 'scripts' subdirectory.
There is some example C code plus examples of complex invocations in
the 'examples' subdirectory. There is also a README file. The example C
may be a simpler example of how to use a SCSI pass-through in Linux
than the main utilities (found in the 'src' subdirectory). This is due
to the fewer abstraction layers (e.g. they don't worry the MinGW in
Windows may open a file in text rather than binary mode).
Some utilities that the author has found useful have been placed in the
'utils' subdirectory.
WEB SITE
There is a web page discussing this package at
http://sg.danny.cz/sg/sg3_utils.html . The device naming used by this
package on various operating systems is discussed at:
http://sg.danny.cz/sg/device_name.html .
AUTHORS
Written by Douglas Gilbert. Some utilities have been contributed, see
the CREDITS file and individual source files (in the 'src' directory).
REPORTING BUGS
Report bugs to <dgilbert at interlog dot com>.
COPYRIGHT
Copyright (C) 1999-2015 Douglas Gilbert
Some utilities are distributed under a GPL version 2 license while
others, usually more recent ones, are under a FreeBSD license. The
files that are common to almost all utilities and thus contain the most
reusable code, namely sg_lib.[hc], sg_cmds_basic.[hc] and
sg_cmds_extra.[hc] are under a FreeBSD license. There is NO warranty;
not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
SEE ALSO
sdparm(sdparm), ddpt(ddpt), lsscsi(lsscsi), dmesg(1), mt(1)
sg3_utils-1.41 May 2015 SG3_UTILS(8)