DragonFly On-Line Manual Pages
GCOV(1) GNU GCOV(1)
NAME
gcov - coverage testing tool
SYNOPSIS
gcov [-v|--version] [-h|--help]
[-a|--all-blocks]
[-b|--branch-probabilities]
[-c|--branch-counts]
[-d|--display-progress]
[-f|--function-summaries]
[-i|--intermediate-format]
[-j|--human-readable]
[-k|--use-colors]
[-l|--long-file-names]
[-m|--demangled-names]
[-n|--no-output]
[-o|--object-directory directory|file]
[-p|--preserve-paths]
[-r|--relative-only]
[-s|--source-prefix directory]
[-u|--unconditional-branches]
[-x|--hash-filenames]
files
DESCRIPTION
gcov is a test coverage program. Use it in concert with GCC to analyze
your programs to help create more efficient, faster running code and to
discover untested parts of your program. You can use gcov as a
profiling tool to help discover where your optimization efforts will
best affect your code. You can also use gcov along with the other
profiling tool, gprof, to assess which parts of your code use the
greatest amount of computing time.
Profiling tools help you analyze your code's performance. Using a
profiler such as gcov or gprof, you can find out some basic performance
statistics, such as:
* how often each line of code executes
* what lines of code are actually executed
* how much computing time each section of code uses
Once you know these things about how your code works when compiled, you
can look at each module to see which modules should be optimized. gcov
helps you determine where to work on optimization.
Software developers also use coverage testing in concert with
testsuites, to make sure software is actually good enough for a
release. Testsuites can verify that a program works as expected; a
coverage program tests to see how much of the program is exercised by
the testsuite. Developers can then determine what kinds of test cases
need to be added to the testsuites to create both better testing and a
better final product.
You should compile your code without optimization if you plan to use
gcov because the optimization, by combining some lines of code into one
function, may not give you as much information as you need to look for
`hot spots' where the code is using a great deal of computer time.
Likewise, because gcov accumulates statistics by line (at the lowest
resolution), it works best with a programming style that places only
one statement on each line. If you use complicated macros that expand
to loops or to other control structures, the statistics are less
helpful---they only report on the line where the macro call appears.
If your complex macros behave like functions, you can replace them with
inline functions to solve this problem.
gcov creates a logfile called sourcefile.gcov which indicates how many
times each line of a source file sourcefile.c has executed. You can
use these logfiles along with gprof to aid in fine-tuning the
performance of your programs. gprof gives timing information you can
use along with the information you get from gcov.
gcov works only on code compiled with GCC. It is not compatible with
any other profiling or test coverage mechanism.
OPTIONS
-a
--all-blocks
Write individual execution counts for every basic block. Normally
gcov outputs execution counts only for the main blocks of a line.
With this option you can determine if blocks within a single line
are not being executed.
-b
--branch-probabilities
Write branch frequencies to the output file, and write branch
summary info to the standard output. This option allows you to see
how often each branch in your program was taken. Unconditional
branches will not be shown, unless the -u option is given.
-c
--branch-counts
Write branch frequencies as the number of branches taken, rather
than the percentage of branches taken.
-d
--display-progress
Display the progress on the standard output.
-f
--function-summaries
Output summaries for each function in addition to the file level
summary.
-h
--help
Display help about using gcov (on the standard output), and exit
without doing any further processing.
-i
--intermediate-format
Output gcov file in an easy-to-parse intermediate text format that
can be used by lcov or other tools. The output is a single .gcov
file per .gcda file. No source code is required.
The format of the intermediate .gcov file is plain text with one
entry per line
version:<gcc_version>
file:<source_file_name>
function:<start_line_number>,<end_line_number>,<execution_count>,<function_name>
lcount:<line number>,<execution_count>,<has_unexecuted_block>
branch:<line_number>,<branch_coverage_type>
Where the <branch_coverage_type> is
notexec (Branch not executed)
taken (Branch executed and taken)
nottaken (Branch executed, but not taken)
There can be multiple file entries in an intermediate gcov file.
All entries following a file pertain to that source file until the
next file entry. If there are multiple functions that start on a
single line, then corresponding lcount is repeated multiple times.
Here is a sample when -i is used in conjunction with -b option:
version: 8.1.0 20180103
file:tmp.cpp
function:7,7,0,_ZN3FooIcEC2Ev
function:7,7,1,_ZN3FooIiEC2Ev
function:8,8,0,_ZN3FooIcE3incEv
function:8,8,2,_ZN3FooIiE3incEv
function:18,37,1,main
lcount:7,0,1
lcount:7,1,0
lcount:8,0,1
lcount:8,2,0
lcount:18,1,0
lcount:21,1,0
branch:21,taken
branch:21,nottaken
lcount:23,1,0
branch:23,taken
branch:23,nottaken
lcount:24,1,0
branch:24,taken
branch:24,nottaken
lcount:25,1,0
lcount:27,11,0
branch:27,taken
branch:27,taken
lcount:28,10,0
lcount:30,1,1
branch:30,nottaken
branch:30,taken
lcount:32,1,0
branch:32,nottaken
branch:32,taken
lcount:33,0,1
branch:33,notexec
branch:33,notexec
lcount:35,1,0
branch:35,taken
branch:35,nottaken
lcount:36,1,0
-j
--human-readable
Write counts in human readable format (like 24k).
-k
--use-colors
Use colors for lines of code that have zero coverage. We use red
color for non-exceptional lines and cyan for exceptional. Same
colors are used for basic blocks with -a option.
-l
--long-file-names
Create long file names for included source files. For example, if
the header file x.h contains code, and was included in the file
a.c, then running gcov on the file a.c will produce an output file
called a.c##x.h.gcov instead of x.h.gcov. This can be useful if
x.h is included in multiple source files and you want to see the
individual contributions. If you use the -p option, both the
including and included file names will be complete path names.
-m
--demangled-names
Display demangled function names in output. The default is to show
mangled function names.
-n
--no-output
Do not create the gcov output file.
-o directory|file
--object-directory directory
--object-file file
Specify either the directory containing the gcov data files, or the
object path name. The .gcno, and .gcda data files are searched for
using this option. If a directory is specified, the data files are
in that directory and named after the input file name, without its
extension. If a file is specified here, the data files are named
after that file, without its extension.
-p
--preserve-paths
Preserve complete path information in the names of generated .gcov
files. Without this option, just the filename component is used.
With this option, all directories are used, with / characters
translated to # characters, . directory components removed and
unremoveable .. components renamed to ^. This is useful if
sourcefiles are in several different directories.
-r
--relative-only
Only output information about source files with a relative pathname
(after source prefix elision). Absolute paths are usually system
header files and coverage of any inline functions therein is
normally uninteresting.
-s directory
--source-prefix directory
A prefix for source file names to remove when generating the output
coverage files. This option is useful when building in a separate
directory, and the pathname to the source directory is not wanted
when determining the output file names. Note that this prefix
detection is applied before determining whether the source file is
absolute.
-u
--unconditional-branches
When branch probabilities are given, include those of unconditional
branches. Unconditional branches are normally not interesting.
-v
--version
Display the gcov version number (on the standard output), and exit
without doing any further processing.
-w
--verbose
Print verbose informations related to basic blocks and arcs.
-x
--hash-filenames
By default, gcov uses the full pathname of the source files to
create an output filename. This can lead to long filenames that
can overflow filesystem limits. This option creates names of the
form source-file##md5.gcov, where the source-file component is the
final filename part and the md5 component is calculated from the
full mangled name that would have been used otherwise.
gcov should be run with the current directory the same as that when you
invoked the compiler. Otherwise it will not be able to locate the
source files. gcov produces files called mangledname.gcov in the
current directory. These contain the coverage information of the
source file they correspond to. One .gcov file is produced for each
source (or header) file containing code, which was compiled to produce
the data files. The mangledname part of the output file name is
usually simply the source file name, but can be something more
complicated if the -l or -p options are given. Refer to those options
for details.
If you invoke gcov with multiple input files, the contributions from
each input file are summed. Typically you would invoke it with the
same list of files as the final link of your executable.
The .gcov files contain the : separated fields along with program
source code. The format is
<execution_count>:<line_number>:<source line text>
Additional block information may succeed each line, when requested by
command line option. The execution_count is - for lines containing no
code. Unexecuted lines are marked ##### or =====, depending on whether
they are reachable by non-exceptional paths or only exceptional paths
such as C++ exception handlers, respectively. Given -a option,
unexecuted blocks are marked $$$$$ or %%%%%, depending on whether a
basic block is reachable via non-exceptional or exceptional paths.
Executed basic blocks having a statement with zero execution_count end
with * character and are colored with magenta color with -k option.
The functionality is not supported in Ada.
Note that GCC can completely remove the bodies of functions that are
not needed -- for instance if they are inlined everywhere. Such
functions are marked with -, which can be confusing. Use the
-fkeep-inline-functions and -fkeep-static-functions options to retain
these functions and allow gcov to properly show their execution_count.
Some lines of information at the start have line_number of zero. These
preamble lines are of the form
-:0:<tag>:<value>
The ordering and number of these preamble lines will be augmented as
gcov development progresses --- do not rely on them remaining
unchanged. Use tag to locate a particular preamble line.
The additional block information is of the form
<tag> <information>
The information is human readable, but designed to be simple enough for
machine parsing too.
When printing percentages, 0% and 100% are only printed when the values
are exactly 0% and 100% respectively. Other values which would
conventionally be rounded to 0% or 100% are instead printed as the
nearest non-boundary value.
When using gcov, you must first compile your program with two special
GCC options: -fprofile-arcs -ftest-coverage. This tells the compiler
to generate additional information needed by gcov (basically a flow
graph of the program) and also includes additional code in the object
files for generating the extra profiling information needed by gcov.
These additional files are placed in the directory where the object
file is located.
Running the program will cause profile output to be generated. For
each source file compiled with -fprofile-arcs, an accompanying .gcda
file will be placed in the object file directory.
Running gcov with your program's source file names as arguments will
now produce a listing of the code along with frequency of execution for
each line. For example, if your program is called tmp.cpp, this is
what you see when you use the basic gcov facility:
$ g++ -fprofile-arcs -ftest-coverage tmp.cpp
$ a.out
$ gcov tmp.cpp -m
File 'tmp.cpp'
Lines executed:92.86% of 14
Creating 'tmp.cpp.gcov'
The file tmp.cpp.gcov contains output from gcov. Here is a sample:
-: 0:Source:tmp.cpp
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:template<class T>
-: 4:class Foo
-: 5:{
-: 6: public:
1*: 7: Foo(): b (1000) {}
------------------
Foo<char>::Foo():
#####: 7: Foo(): b (1000) {}
------------------
Foo<int>::Foo():
1: 7: Foo(): b (1000) {}
------------------
2*: 8: void inc () { b++; }
------------------
Foo<char>::inc():
#####: 8: void inc () { b++; }
------------------
Foo<int>::inc():
2: 8: void inc () { b++; }
------------------
-: 9:
-: 10: private:
-: 11: int b;
-: 12:};
-: 13:
-: 14:template class Foo<int>;
-: 15:template class Foo<char>;
-: 16:
-: 17:int
1: 18:main (void)
-: 19:{
-: 20: int i, total;
1: 21: Foo<int> counter;
-: 22:
1: 23: counter.inc();
1: 24: counter.inc();
1: 25: total = 0;
-: 26:
11: 27: for (i = 0; i < 10; i++)
10: 28: total += i;
-: 29:
1*: 30: int v = total > 100 ? 1 : 2;
-: 31:
1: 32: if (total != 45)
#####: 33: printf ("Failure\n");
-: 34: else
1: 35: printf ("Success\n");
1: 36: return 0;
-: 37:}
Note that line 7 is shown in the report multiple times. First
occurrence presents total number of execution of the line and the next
two belong to instances of class Foo constructors. As you can also
see, line 30 contains some unexecuted basic blocks and thus execution
count has asterisk symbol.
When you use the -a option, you will get individual block counts, and
the output looks like this:
-: 0:Source:tmp.cpp
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:template<class T>
-: 4:class Foo
-: 5:{
-: 6: public:
1*: 7: Foo(): b (1000) {}
------------------
Foo<char>::Foo():
#####: 7: Foo(): b (1000) {}
------------------
Foo<int>::Foo():
1: 7: Foo(): b (1000) {}
------------------
2*: 8: void inc () { b++; }
------------------
Foo<char>::inc():
#####: 8: void inc () { b++; }
------------------
Foo<int>::inc():
2: 8: void inc () { b++; }
------------------
-: 9:
-: 10: private:
-: 11: int b;
-: 12:};
-: 13:
-: 14:template class Foo<int>;
-: 15:template class Foo<char>;
-: 16:
-: 17:int
1: 18:main (void)
-: 19:{
-: 20: int i, total;
1: 21: Foo<int> counter;
1: 21-block 0
-: 22:
1: 23: counter.inc();
1: 23-block 0
1: 24: counter.inc();
1: 24-block 0
1: 25: total = 0;
-: 26:
11: 27: for (i = 0; i < 10; i++)
1: 27-block 0
11: 27-block 1
10: 28: total += i;
10: 28-block 0
-: 29:
1*: 30: int v = total > 100 ? 1 : 2;
1: 30-block 0
%%%%%: 30-block 1
1: 30-block 2
-: 31:
1: 32: if (total != 45)
1: 32-block 0
#####: 33: printf ("Failure\n");
%%%%%: 33-block 0
-: 34: else
1: 35: printf ("Success\n");
1: 35-block 0
1: 36: return 0;
1: 36-block 0
-: 37:}
In this mode, each basic block is only shown on one line -- the last
line of the block. A multi-line block will only contribute to the
execution count of that last line, and other lines will not be shown to
contain code, unless previous blocks end on those lines. The total
execution count of a line is shown and subsequent lines show the
execution counts for individual blocks that end on that line. After
each block, the branch and call counts of the block will be shown, if
the -b option is given.
Because of the way GCC instruments calls, a call count can be shown
after a line with no individual blocks. As you can see, line 33
contains a basic block that was not executed.
When you use the -b option, your output looks like this:
-: 0:Source:tmp.cpp
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:template<class T>
-: 4:class Foo
-: 5:{
-: 6: public:
1*: 7: Foo(): b (1000) {}
------------------
Foo<char>::Foo():
function Foo<char>::Foo() called 0 returned 0% blocks executed 0%
#####: 7: Foo(): b (1000) {}
------------------
Foo<int>::Foo():
function Foo<int>::Foo() called 1 returned 100% blocks executed 100%
1: 7: Foo(): b (1000) {}
------------------
2*: 8: void inc () { b++; }
------------------
Foo<char>::inc():
function Foo<char>::inc() called 0 returned 0% blocks executed 0%
#####: 8: void inc () { b++; }
------------------
Foo<int>::inc():
function Foo<int>::inc() called 2 returned 100% blocks executed 100%
2: 8: void inc () { b++; }
------------------
-: 9:
-: 10: private:
-: 11: int b;
-: 12:};
-: 13:
-: 14:template class Foo<int>;
-: 15:template class Foo<char>;
-: 16:
-: 17:int
function main called 1 returned 100% blocks executed 81%
1: 18:main (void)
-: 19:{
-: 20: int i, total;
1: 21: Foo<int> counter;
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
-: 22:
1: 23: counter.inc();
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
1: 24: counter.inc();
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
1: 25: total = 0;
-: 26:
11: 27: for (i = 0; i < 10; i++)
branch 0 taken 91% (fallthrough)
branch 1 taken 9%
10: 28: total += i;
-: 29:
1*: 30: int v = total > 100 ? 1 : 2;
branch 0 taken 0% (fallthrough)
branch 1 taken 100%
-: 31:
1: 32: if (total != 45)
branch 0 taken 0% (fallthrough)
branch 1 taken 100%
#####: 33: printf ("Failure\n");
call 0 never executed
branch 1 never executed
branch 2 never executed
-: 34: else
1: 35: printf ("Success\n");
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
1: 36: return 0;
-: 37:}
For each function, a line is printed showing how many times the
function is called, how many times it returns and what percentage of
the function's blocks were executed.
For each basic block, a line is printed after the last line of the
basic block describing the branch or call that ends the basic block.
There can be multiple branches and calls listed for a single source
line if there are multiple basic blocks that end on that line. In this
case, the branches and calls are each given a number. There is no
simple way to map these branches and calls back to source constructs.
In general, though, the lowest numbered branch or call will correspond
to the leftmost construct on the source line.
For a branch, if it was executed at least once, then a percentage
indicating the number of times the branch was taken divided by the
number of times the branch was executed will be printed. Otherwise,
the message "never executed" is printed.
For a call, if it was executed at least once, then a percentage
indicating the number of times the call returned divided by the number
of times the call was executed will be printed. This will usually be
100%, but may be less for functions that call "exit" or "longjmp", and
thus may not return every time they are called.
The execution counts are cumulative. If the example program were
executed again without removing the .gcda file, the count for the
number of times each line in the source was executed would be added to
the results of the previous run(s). This is potentially useful in
several ways. For example, it could be used to accumulate data over a
number of program runs as part of a test verification suite, or to
provide more accurate long-term information over a large number of
program runs.
The data in the .gcda files is saved immediately before the program
exits. For each source file compiled with -fprofile-arcs, the
profiling code first attempts to read in an existing .gcda file; if the
file doesn't match the executable (differing number of basic block
counts) it will ignore the contents of the file. It then adds in the
new execution counts and finally writes the data to the file.
Using gcov with GCC Optimization
If you plan to use gcov to help optimize your code, you must first
compile your program with two special GCC options: -fprofile-arcs
-ftest-coverage. Aside from that, you can use any other GCC options;
but if you want to prove that every single line in your program was
executed, you should not compile with optimization at the same time.
On some machines the optimizer can eliminate some simple code lines by
combining them with other lines. For example, code like this:
if (a != b)
c = 1;
else
c = 0;
can be compiled into one instruction on some machines. In this case,
there is no way for gcov to calculate separate execution counts for
each line because there isn't separate code for each line. Hence the
gcov output looks like this if you compiled the program with
optimization:
100: 12:if (a != b)
100: 13: c = 1;
100: 14:else
100: 15: c = 0;
The output shows that this block of code, combined by optimization,
executed 100 times. In one sense this result is correct, because there
was only one instruction representing all four of these lines.
However, the output does not indicate how many times the result was 0
and how many times the result was 1.
Inlineable functions can create unexpected line counts. Line counts
are shown for the source code of the inlineable function, but what is
shown depends on where the function is inlined, or if it is not inlined
at all.
If the function is not inlined, the compiler must emit an out of line
copy of the function, in any object file that needs it. If fileA.o and
fileB.o both contain out of line bodies of a particular inlineable
function, they will also both contain coverage counts for that
function. When fileA.o and fileB.o are linked together, the linker
will, on many systems, select one of those out of line bodies for all
calls to that function, and remove or ignore the other. Unfortunately,
it will not remove the coverage counters for the unused function body.
Hence when instrumented, all but one use of that function will show
zero counts.
If the function is inlined in several places, the block structure in
each location might not be the same. For instance, a condition might
now be calculable at compile time in some instances. Because the
coverage of all the uses of the inline function will be shown for the
same source lines, the line counts themselves might seem inconsistent.
Long-running applications can use the "__gcov_reset" and "__gcov_dump"
facilities to restrict profile collection to the program region of
interest. Calling "__gcov_reset(void)" will clear all profile counters
to zero, and calling "__gcov_dump(void)" will cause the profile
information collected at that point to be dumped to .gcda output files.
Instrumented applications use a static destructor with priority 99 to
invoke the "__gcov_dump" function. Thus "__gcov_dump" is executed after
all user defined static destructors, as well as handlers registered
with "atexit". If an executable loads a dynamic shared object via
dlopen functionality, -Wl,--dynamic-list-data is needed to dump all
profile data.
SEE ALSO
gpl(7), gfdl(7), fsf-funding(7), gcc(1) and the Info entry for gcc.
COPYRIGHT
Copyright (c) 1996-2018 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Funding Free
Software", the Front-Cover texts being (a) (see below), and with the
Back-Cover Texts being (b) (see below). A copy of the license is
included in the gfdl(7) man page.
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.
gcc-8.3.0 2019-02-22 GCOV(1)
GCOV-TOOL(1) GNU GCOV-TOOL(1)
NAME
gcov-tool - offline gcda profile processing tool
SYNOPSIS
gcov-tool [-v|--version] [-h|--help]
gcov-tool merge [merge-options] directory1 directory2
[-o|--output directory]
[-v|--verbose]
[-w|--weight w1,w2]
gcov-tool rewrite [rewrite-options] directory
[-n|--normalize long_long_value]
[-o|--output directory]
[-s|--scale float_or_simple-frac_value]
[-v|--verbose]
gcov-tool overlap [overlap-options] directory1 directory2
[-f|--function]
[-F|--fullname]
[-h|--hotonly]
[-o|--object]
[-t|--hot_threshold] float
[-v|--verbose]
DESCRIPTION
gcov-tool is an offline tool to process gcc's gcda profile files.
Current gcov-tool supports the following functionalities:
* merge two sets of profiles with weights.
* read one set of profile and rewrite profile contents. One can scale
or normalize the count values.
Examples of the use cases for this tool are:
* Collect the profiles for different set of inputs, and use this tool
to merge them. One can specify the weight to factor in the relative
importance of each input.
* Rewrite the profile after removing a subset of the gcda files,
while maintaining the consistency of the summary and the histogram.
* It can also be used to debug or libgcov code as the tools shares
the majority code as the runtime library.
Note that for the merging operation, this profile generated offline may
contain slight different values from the online merged profile. Here
are a list of typical differences:
* histogram difference: This offline tool recomputes the histogram
after merging the counters. The resulting histogram, therefore, is
precise. The online merging does not have this capability -- the
histogram is merged from two histograms and the result is an
approximation.
* summary checksum difference: Summary checksum uses a CRC32
operation. The value depends on the link list order of gcov-info
objects. This order is different in gcov-tool from that in the
online merge. It's expected to have different summary checksums. It
does not really matter as the compiler does not use this checksum
anywhere.
* value profile counter values difference: Some counter values for
value profile are runtime dependent, like heap addresses. It's
normal to see some difference in these kind of counters.
OPTIONS
-h
--help
Display help about using gcov-tool (on the standard output), and
exit without doing any further processing.
-v
--version
Display the gcov-tool version number (on the standard output), and
exit without doing any further processing.
merge
Merge two profile directories.
-o directory
--output directory
Set the output profile directory. Default output directory name
is merged_profile.
-v
--verbose
Set the verbose mode.
-w w1,w2
--weight w1,w2
Set the merge weights of the directory1 and directory2,
respectively. The default weights are 1 for both.
rewrite
Read the specified profile directory and rewrite to a new
directory.
-n long_long_value
--normalize <long_long_value>
Normalize the profile. The specified value is the max counter
value in the new profile.
-o directory
--output directory
Set the output profile directory. Default output name is
rewrite_profile.
-s float_or_simple-frac_value
--scale float_or_simple-frac_value
Scale the profile counters. The specified value can be in
floating point value, or simple fraction value form, such 1, 2,
2/3, and 5/3.
-v
--verbose
Set the verbose mode.
overlap
Compute the overlap score between the two specified profile
directories. The overlap score is computed based on the arc
profiles. It is defined as the sum of min (p1_counter[i] /
p1_sum_all, p2_counter[i] / p2_sum_all), for all arc counter i,
where p1_counter[i] and p2_counter[i] are two matched counters and
p1_sum_all and p2_sum_all are the sum of counter values in profile
1 and profile 2, respectively.
-f
--function
Print function level overlap score.
-F
--fullname
Print full gcda filename.
-h
--hotonly
Only print info for hot objects/functions.
-o
--object
Print object level overlap score.
-t float
--hot_threshold <float>
Set the threshold for hot counter value.
-v
--verbose
Set the verbose mode.
SEE ALSO
gpl(7), gfdl(7), fsf-funding(7), gcc(1), gcov(1) and the Info entry for
gcc.
COPYRIGHT
Copyright (c) 2014-2022 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Funding Free
Software", the Front-Cover texts being (a) (see below), and with the
Back-Cover Texts being (b) (see below). A copy of the license is
included in the gfdl(7) man page.
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.
gcc-12.2.0 2022-08-19 GCOV-TOOL(1)