DragonFly On-Line Manual Pages
MPI_Win_allocate_shared(3) MPI MPI_Win_allocate_shared(3)
NAME
MPI_Win_allocate_shared - Create an MPI Window object for one-sided
communication and shared memory access, and allocate memory at each
process.
SYNOPSIS
int MPI_Win_allocate_shared(MPI_Aint size, int disp_unit, MPI_Info info, MPI_Comm comm,
void *baseptr, MPI_Win *win)
This is a collective call executed by all processes in the group of
comm. On each process i, it allocates memory of at least size bytes
that is shared among all processes in comm, and returns a pointer to
the locally allocated segment in baseptr that can be used for
load/store accesses on the calling process. The locally allocated
memory can be the target of load/store accesses by remote processes;
the base pointers for other processes can be queried using the function
MPI_Win_shared_query .
The call also returns a window object that can be used by all processes
in comm to perform RMA operations. The size argument may be different
at each process and size = 0 is valid. It is the user's responsibility
to ensure that the communicator comm represents a group of processes
that can create a shared memory segment that can be accessed by all
processes in the group. The allocated memory is contiguous across
process ranks unless the info key alloc_shared_noncontig is specified.
Contiguous across process ranks means that the first address in the
memory segment of process i is consecutive with the last address in the
memory segment of process i - 1. This may enable the user to calculate
remote address offsets with local information only.
INPUT PARAMETERS
size - size of window in bytes (nonnegative integer)
disp_unit
- local unit size for displacements, in bytes (positive integer)
info - info argument (handle)
comm - communicator (handle)
OUTPUT PARAMETERS
baseptr
- initial address of window (choice)
win - window object returned by the call (handle)
THREAD AND INTERRUPT SAFETY
This routine is thread-safe. This means that this routine may be
safely used by multiple threads without the need for any user-provided
thread locks. However, the routine is not interrupt safe. Typically,
this is due to the use of memory allocation routines such as malloc or
other non-MPICH runtime routines that are themselves not interrupt-
safe.
NOTES FOR FORTRAN
All MPI routines in Fortran (except for MPI_WTIME and MPI_WTICK ) have
an additional argument ierr at the end of the argument list. ierr is
an integer and has the same meaning as the return value of the routine
in C. In Fortran, MPI routines are subroutines, and are invoked with
the call statement.
All MPI objects (e.g., MPI_Datatype , MPI_Comm ) are of type INTEGER in
Fortran.
ERRORS
All MPI routines (except MPI_Wtime and MPI_Wtick ) return an error
value; C routines as the value of the function and Fortran routines in
the last argument. Before the value is returned, the current MPI error
handler is called. By default, this error handler aborts the MPI job.
The error handler may be changed with MPI_Comm_set_errhandler (for
communicators), MPI_File_set_errhandler (for files), and
MPI_Win_set_errhandler (for RMA windows). The MPI-1 routine
MPI_Errhandler_set may be used but its use is deprecated. The
predefined error handler MPI_ERRORS_RETURN may be used to cause error
values to be returned. Note that MPI does not guarentee that an MPI
program can continue past an error; however, MPI implementations will
attempt to continue whenever possible.
MPI_SUCCESS
- No error; MPI routine completed successfully.
MPI_ERR_ARG
- Invalid argument. Some argument is invalid and is not
identified by a specific error class (e.g., MPI_ERR_RANK ).
MPI_ERR_COMM
- Invalid communicator. A common error is to use a null
communicator in a call (not even allowed in MPI_Comm_rank ).
MPI_ERR_INFO
- Invalid Info
MPI_ERR_OTHER
- Other error; use MPI_Error_string to get more information
about this error code.
MPI_ERR_SIZE
-
SEE ALSO
MPI_Win_allocate MPI_Win_create MPI_Win_create_dynamic MPI_Win_free
MPI_Win_shared_query
11/9/2015 MPI_Win_allocate_shared(3)