DragonFly On-Line Manual Pages
IPMI-PET(8) System Commands IPMI-PET(8)
NAME
IPMI - IPMI Platform Event Trap Interpreter
SYNOPSIS
ipmi-pet [OPTION...] [SPECIFIC TRAP] [VARIABLE BINDING HEX BYTES ...]
DESCRIPTION
Ipmi-pet interprets hex bytes from a platform event trap (PET) and
outputs a string representing its contents. Hex values may be input on
the command line, a file via the --file option, or via stdin if neither
of the previous are specified.
Ipmi-pet is commonly used in conjunction with an SNMP trap daemon to
intrepret the results from an IPMI PET trap captured by the daemon.
While ipmi-pet could be called directly from such a daemon, typically a
script is called to parse the SNMP daemon's output and convert it into
a form that can be input into ipmi-pet. On some systems, you may wish
to also send a PET acknowledge to a remote system to inform it the trap
was received and parsed. One can be sent using the --pet-acknowledge
option.
While an IPMI session is not required to interpret a PET, data from the
sensor data repository (SDR) is required to properly interpret sensor
names and other information in the PET. IPMI session configuration
below, such as driver, hostname, username, etc. should be configured to
load the SDR of the host where the trap originated. If this is
difficult to perform, it may be wise to cache and load a specific SDR
cache using the --sdr-cache-file option. If the SDR is difficult to
obtain, the --ignore-sdr-cache option can be specified so that an SDR
will not be loaded, and an IPMI session will not be required. The PET
will be interpreted as best as possible given no SDR. The
--ignore-sdr-cache option may affect other options such as
--interpret-oem-data too. Some options, such as --manufacturer-id and
--product-id may alleviate some of these issues.
If the SNMP daemon does not output a SNMPv1 specific trap on its own,
it is typically output as the last element of the OID in SNMPv2. If
for some reason a specific trap cannot be determined, the value of NA
may be input for the specific trap to indicate it is not available.
Ipmi-pet will output as much as possible based on the variable bindings
information. Some of the specific trap information may be obtained via
SDR information.
Listed below are general IPMI options, tool specific options, trouble
shooting information, workaround information, examples, and known
issues. For a general introduction to FreeIPMI please see freeipmi(7).
GENERAL OPTIONS
The following options are general options for configuring IPMI
communication and executing general tool commands.
-D IPMIDRIVER, --driver-type=IPMIDRIVER
Specify the driver type to use instead of doing an auto
selection. The currently available outofband drivers are LAN
and LAN_2_0, which perform IPMI 1.5 and IPMI 2.0 respectively.
The currently available inband drivers are KCS, SSIF, OPENIPMI,
SUNBMC, and INTELDCMI.
--disable-auto-probe
Do not probe in-band IPMI devices for default settings.
--driver-address=DRIVER-ADDRESS
Specify the in-band driver address to be used instead of the
probed value. DRIVER-ADDRESS should be prefixed with "0x" for a
hex value and '0' for an octal value.
--driver-device=DEVICE
Specify the in-band driver device path to be used instead of the
probed path.
--register-spacing=REGISTER-SPACING
Specify the in-band driver register spacing instead of the
probed value. Argument is in bytes (i.e. 32bit register spacing
= 4)
--target-channel-number=CHANNEL-NUMBER
Specify the in-band driver target channel number to send IPMI
requests to.
--target-slave-address=SLAVE-ADDRESS
Specify the in-band driver target slave number to send IPMI
requests to.
-h IPMIHOST, --hostname=IPMIHOST[:PORT]
Specify the remote host to communicate with. An optional port
can be specified, which may be useful in port forwarding or
similar situations.
-u USERNAME, --username=USERNAME
Specify the username to use when authenticating with the remote
host. If not specified, a null (i.e. anonymous) username is
assumed. The user must have atleast OPERATOR privileges in order
for this tool to operate fully.
-p PASSWORD, --password=PASSWORD
Specify the password to use when authenticationg with the remote
host. If not specified, a null password is assumed. Maximum
password length is 16 for IPMI 1.5 and 20 for IPMI 2.0.
-P, --password-prompt
Prompt for password to avoid possibility of listing it in
process lists.
-k K_G, --k-g=K_G
Specify the K_g BMC key to use when authenticating with the
remote host for IPMI 2.0. If not specified, a null key is
assumed. To input the key in hexadecimal form, prefix the string
with '0x'. E.g., the key 'abc' can be entered with the either
the string 'abc' or the string '0x616263'
-K, --k-g-prompt
Prompt for k-g to avoid possibility of listing it in process
lists.
--session-timeout=MILLISECONDS
Specify the session timeout in milliseconds. Defaults to 20000
milliseconds (20 seconds) if not specified.
--retransmission-timeout=MILLISECONDS
Specify the packet retransmission timeout in milliseconds.
Defaults to 1000 milliseconds (1 second) if not specified. The
retransmission timeout cannot be larger than the session
timeout.
-a AUTHENTICATION-TYPE, --authentication-type=AUTHENTICATION-TYPE
Specify the IPMI 1.5 authentication type to use. The currently
available authentication types are NONE, STRAIGHT_PASSWORD_KEY,
MD2, and MD5. Defaults to MD5 if not specified.
-I CIPHER-SUITE-ID, --cipher-suite-id=CIPHER-SUITE-ID
Specify the IPMI 2.0 cipher suite ID to use. The Cipher Suite ID
identifies a set of authentication, integrity, and
confidentiality algorithms to use for IPMI 2.0 communication.
The authentication algorithm identifies the algorithm to use for
session setup, the integrity algorithm identifies the algorithm
to use for session packet signatures, and the confidentiality
algorithm identifies the algorithm to use for payload
encryption. Defaults to cipher suite ID 3 if not specified. The
following cipher suite ids are currently supported:
0 - Authentication Algorithm = None; Integrity Algorithm = None;
Confidentiality Algorithm = None
1 - Authentication Algorithm = HMAC-SHA1; Integrity Algorithm =
None; Confidentiality Algorithm = None
2 - Authentication Algorithm = HMAC-SHA1; Integrity Algorithm =
HMAC-SHA1-96; Confidentiality Algorithm = None
3 - Authentication Algorithm = HMAC-SHA1; Integrity Algorithm =
HMAC-SHA1-96; Confidentiality Algorithm = AES-CBC-128
6 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm =
None; Confidentiality Algorithm = None
7 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm =
HMAC-MD5-128; Confidentiality Algorithm = None
8 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm =
HMAC-MD5-128; Confidentiality Algorithm = AES-CBC-128
11 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm =
MD5-128; Confidentiality Algorithm = None
12 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm =
MD5-128; Confidentiality Algorithm = AES-CBC-128
15 - Authentication Algorithm = HMAC-SHA256; Integrity Algorithm
= None; Confidentiality Algorithm = None
16 - Authentication Algorithm = HMAC-SHA256; Integrity Algorithm
= HMAC_SHA256_128; Confidentiality Algorithm = None
17 - Authentication Algorithm = HMAC-SHA256; Integrity Algorithm
= HMAC_SHA256_128; Confidentiality Algorithm = AES-CBC-128
-l PRIVILEGE-LEVEL, --privilege-level=PRIVILEGE-LEVEL
Specify the privilege level to be used. The currently available
privilege levels are USER, OPERATOR, and ADMIN. Defaults to
OPERATOR if not specified.
--config-file=FILE
Specify an alternate configuration file.
-W WORKAROUNDS, --workaround-flags=WORKAROUNDS
Specify workarounds to vendor compliance issues. Multiple
workarounds can be specified separated by commas. A special
command line flag of "none", will indicate no workarounds (may
be useful for overriding configured defaults). See WORKAROUNDS
below for a list of available workarounds.
--debug
Turn on debugging.
-?, --help
Output a help list and exit.
--usage
Output a usage message and exit.
-V, --version
Output the program version and exit.
IPMI-PET OPTIONS
The following options are specific to Ipmi-pet.
-v Output verbose output. This option will output event direction
and OEM custom messages from the trap.
-vv Output very verbose output. This option will output additional
information available in the trap, such as GUID, manufacturer
ID, and system ID.
-vvv Output very very verbose output. This option will output
additional information than verbose output. Most notably it will
output additional hex codes to given information on ambiguous
events. For example, it will output Generator ID hex codes for
sensors without names.
--pet-acknowledge
Send PET acknowledge using inputted trap data instead of
outputting data. In some circumstances, this may be useful to
inform a remote system that a trap was received and parsed. If
specified, a hostname must be specified via -h or --hostname to
inform ipmi-pet where to send the acknowledge to. When this
option is specified, the SDR cache is not loaded and is not
required.
--file=CMD-FILE
Specify a file to read PET specific trap and variable bindings
hex from instead of command line.
--output-event-severity
Output event severity in output. This will add an additional
output of an event severity. The outputs may be Monitor,
Information, OK, Non-critical condition, Critical condition, or
Non-recoverable condition. This differs from the output of
--output-event-state, as event severity is not interpreted, it
is a value reported in the SNMP trap. However, not all events
may report a severity, or some manufacturers may not support the
report of a severity. Event severity will automatically be
output under verbose output.
--output-event-state
Output event state in output. This will add an additional output
reporting if an event should be viewed as NOMINAL, WARNING, or
CRITICAL. This differs from the output of
--output-event-severity, as this output is an interpreted value
that will be interpreted identically to the --output-event-state
output in ipmi-sel(8). As long as an event interpretation is
supported, all events will have outputted state. The event state
is an interpreted value based on the configuration file
/usr/local/etc/freeipmi/freeipmi_interpret_sel.conf and the
event direction. See freeipmi_interpret_sel.conf(5) for more
information.
--event-state-config-file=FILE
Specify an alternate event state configuration file. Option
ignored if --output-event-state not specified.
--manufacturer-id=NUMBER
Specify a specific manufacturer id to assume. Useful if you wish
to specify --interpret-oem-data, but the manufacturer id cannot
be determined by IPMI access or is not available in the SNMP
trap. The manufacturer id of a motherboard can be determined
with bmc-info(8). If this option is specified, so must
--product-id.
--product-id=NUMBER
Specify a specific product id to assume. Useful if you wish to
specify --interpret-oem-data, but the product id cannot be
determined by IPMI access or is not available in the SNMP trap.
The product id of a motherboard can be determined with
bmc-info(8). If this option is specified, so must
--manufacturer-id.
--interpret-oem-data
Attempt to interpret OEM data, such as event data, sensor
readings, or general extra info, etc. If an OEM interpretation
is not available, the default output will be generated.
Correctness of OEM interpretations cannot be guaranteed due to
potential changes OEM vendors may make in products, firmware,
etc. See OEM INTERPRETATION below for confirmed supported
motherboard interpretations.
--entity-sensor-names
Output sensor names prefixed with their entity id and instance
number when appropriate. This may be necessary on some
motherboards to help identify what sensors are referencing. For
example, a motherboard may have multiple sensors named 'TEMP'.
The entity id and instance number may help clarify which sensor
refers to "Processor 1" vs. "Processor 2".
--no-sensor-type-output
Do not show sensor type output for each entry. On many systems,
the sensor type is redundant to the name of the sensor. This can
especially be true if --entity-sensor-names is specified. If
the sensor name is sufficient, or if the sensor type is of no
interest to the user, this option can be specified to condense
output.
--comma-separated-output
Output fields in comma separated format.
--no-header-output
Do not output column headers. May be useful in scripting.
--non-abbreviated-units
Output non-abbreviated units (e.g. 'Amps' instead of 'A'). May
aid in disambiguation of units (e.g. 'C' for Celsius or
Coulombs).
SDR CACHE OPTIONS
This tool requires access to the sensor data repository (SDR) cache for
general operation. By default, SDR data will be downloaded and cached
on the local machine. The following options apply to the SDR cache.
-f, --flush-cache
Flush a cached version of the sensor data repository (SDR)
cache. The SDR is typically cached for faster subsequent access.
However, it may need to be flushed and re-generated if the SDR
has been updated on a system.
-Q, --quiet-cache
Do not output information about cache creation/deletion. May be
useful in scripting.
--sdr-cache-recreate
If the SDR cache is out of date or invalid, automatically
recreate the sensor data repository (SDR) cache. This option may
be useful for scripting purposes.
--sdr-cache-file=FILE
Specify a specific sensor data repository (SDR) cache file to be
stored or read from. If this option is used when multiple hosts
are specified, the same SDR cache file will be used for all
hosts.
--sdr-cache-directory=DIRECTORY
Specify an alternate directory for sensor data repository (SDR)
caches to be stored or read from. Defaults to the home directory
if not specified.
--ignore-sdr-cache
Ignore SDR cache related processing. May lead to incomplete or
less useful information being output, however it will allow
functionality for systems without SDRs or when the correct SDR
cannot be loaded.
GENERAL TROUBLESHOOTING
Most often, IPMI problems are due to configuration problems.
IPMI over LAN problems involve a misconfiguration of the remote
machine's BMC. Double check to make sure the following are configured
properly in the remote machine's BMC: IP address, MAC address, subnet
mask, username, user enablement, user privilege, password, LAN
privilege, LAN enablement, and allowed authentication type(s). For IPMI
2.0 connections, double check to make sure the cipher suite
privilege(s) and K_g key are configured properly. The ipmi-config(8)
tool can be used to check and/or change these configuration settings.
Inband IPMI problems are typically caused by improperly configured
drivers or non-standard BMCs.
In addition to the troubleshooting tips below, please see WORKAROUNDS
below to also if there are any vendor specific bugs that have been
discovered and worked around.
Listed below are many of the common issues for error messages. For
additional support, please e-mail the <freeipmi-users@gnu.org> mailing
list.
"username invalid" - The username entered (or a NULL username if none
was entered) is not available on the remote machine. It may also be
possible the remote BMC's username configuration is incorrect.
"password invalid" - The password entered (or a NULL password if none
was entered) is not correct. It may also be possible the password for
the user is not correctly configured on the remote BMC.
"password verification timeout" - Password verification has timed out.
A "password invalid" error (described above) or a generic "session
timeout" (described below) occurred. During this point in the protocol
it cannot be differentiated which occurred.
"k_g invalid" - The K_g key entered (or a NULL K_g key if none was
entered) is not correct. It may also be possible the K_g key is not
correctly configured on the remote BMC.
"privilege level insufficient" - An IPMI command requires a higher user
privilege than the one authenticated with. Please try to authenticate
with a higher privilege. This may require authenticating to a different
user which has a higher maximum privilege.
"privilege level cannot be obtained for this user" - The privilege
level you are attempting to authenticate with is higher than the
maximum allowed for this user. Please try again with a lower privilege.
It may also be possible the maximum privilege level allowed for a user
is not configured properly on the remote BMC.
"authentication type unavailable for attempted privilege level" - The
authentication type you wish to authenticate with is not available for
this privilege level. Please try again with an alternate authentication
type or alternate privilege level. It may also be possible the
available authentication types you can authenticate with are not
correctly configured on the remote BMC.
"cipher suite id unavailable" - The cipher suite id you wish to
authenticate with is not available on the remote BMC. Please try again
with an alternate cipher suite id. It may also be possible the
available cipher suite ids are not correctly configured on the remote
BMC.
"ipmi 2.0 unavailable" - IPMI 2.0 was not discovered on the remote
machine. Please try to use IPMI 1.5 instead.
"connection timeout" - Initial IPMI communication failed. A number of
potential errors are possible, including an invalid hostname specified,
an IPMI IP address cannot be resolved, IPMI is not enabled on the
remote server, the network connection is bad, etc. Please verify
configuration and connectivity.
"session timeout" - The IPMI session has timed out. Please reconnect.
If this error occurs often, you may wish to increase the retransmission
timeout. Some remote BMCs are considerably slower than others.
"device not found" - The specified device could not be found. Please
check configuration or inputs and try again.
"driver timeout" - Communication with the driver or device has timed
out. Please try again.
"message timeout" - Communication with the driver or device has timed
out. Please try again.
"BMC busy" - The BMC is currently busy. It may be processing
information or have too many simultaneous sessions to manage. Please
wait and try again.
"could not find inband device" - An inband device could not be found.
Please check configuration or specify specific device or driver on the
command line.
"driver timeout" - The inband driver has timed out communicating to the
local BMC or service processor. The BMC or service processor may be
busy or (worst case) possibly non-functioning.
"internal IPMI error" - An IPMI error has occurred that FreeIPMI does
not know how to handle. Please e-mail <freeipmi-users@gnu.org> to
report the issue.
WORKAROUNDS
With so many different vendors implementing their own IPMI solutions,
different vendors may implement their IPMI protocols incorrectly. The
following describes a number of workarounds currently available to
handle discovered compliance issues. When possible, workarounds have
been implemented so they will be transparent to the user. However, some
will require the user to specify a workaround be used via the -W
option.
The hardware listed below may only indicate the hardware that a problem
was discovered on. Newer versions of hardware may fix the problems
indicated below. Similar machines from vendors may or may not exhibit
the same problems. Different vendors may license their firmware from
the same IPMI firmware developer, so it may be worthwhile to try
workarounds listed below even if your motherboard is not listed.
If you believe your hardware has an additional compliance issue that
needs a workaround to be implemented, please contact the FreeIPMI
maintainers on <freeipmi-users@gnu.org> or <freeipmi-devel@gnu.org>.
assumeio - This workaround flag will assume inband interfaces
communicate with system I/O rather than being memory-mapped. This will
work around systems that report invalid base addresses. Those hitting
this issue may see "device not supported" or "could not find inband
device" errors. Issue observed on HP ProLiant DL145 G1.
spinpoll - This workaround flag will inform some inband drivers (most
notably the KCS driver) to spin while polling rather than putting the
process to sleep. This may significantly improve the wall clock running
time of tools because an operating system scheduler's granularity may
be much larger than the time it takes to perform a single IPMI message
transaction. However, by spinning, your system may be performing less
useful work by not contexting out the tool for a more useful task.
authcap - This workaround flag will skip early checks for username
capabilities, authentication capabilities, and K_g support and allow
IPMI authentication to succeed. It works around multiple issues in
which the remote system does not properly report username capabilities,
authentication capabilities, or K_g status. Those hitting this issue
may see "username invalid", "authentication type unavailable for
attempted privilege level", or "k_g invalid" errors. Issue observed on
Asus P5M2/P5MT-R/RS162-E4/RX4, Intel SR1520ML/X38ML, and Sun Fire
2200/4150/4450 with ELOM.
nochecksumcheck - This workaround flag will tell FreeIPMI to not check
the checksums returned from IPMI command responses. It works around
systems that return invalid checksums due to implementation errors, but
the packet is otherwise valid. Users are cautioned on the use of this
option, as it removes validation of packet integrity in a number of
circumstances. However, it is unlikely to be an issue in most
situations. Those hitting this issue may see "connection timeout",
"session timeout", or "password verification timeout" errors. On IPMI
1.5 connections, the "noauthcodecheck" workaround may also needed too.
Issue observed on Supermicro X9SCM-iiF, Supermicro X9DRi-F, and
Supermicro X9DRFR.
idzero - This workaround flag will allow empty session IDs to be
accepted by the client. It works around IPMI sessions that report empty
session IDs to the client. Those hitting this issue may see "session
timeout" errors. Issue observed on Tyan S2882 with M3289 BMC.
unexpectedauth - This workaround flag will allow unexpected non-null
authcodes to be checked as though they were expected. It works around
an issue when packets contain non-null authentication data when they
should be null due to disabled per-message authentication. Those
hitting this issue may see "session timeout" errors. Issue observed on
Dell PowerEdge 2850,SC1425. Confirmed fixed on newer firmware.
forcepermsg - This workaround flag will force per-message
authentication to be used no matter what is advertised by the remote
system. It works around an issue when per-message authentication is
advertised as disabled on the remote system, but it is actually
required for the protocol. Those hitting this issue may see "session
timeout" errors. Issue observed on IBM eServer 325.
endianseq - This workaround flag will flip the endian of the session
sequence numbers to allow the session to continue properly. It works
around IPMI 1.5 session sequence numbers that are the wrong endian.
Those hitting this issue may see "session timeout" errors. Issue
observed on some Sun ILOM 1.0/2.0 (depends on service processor
endian).
noauthcodecheck - This workaround flag will tell FreeIPMI to not check
the authentication codes returned from IPMI 1.5 command responses. It
works around systems that return invalid authentication codes due to
hashing or implementation errors. Users are cautioned on the use of
this option, as it removes an authentication check verifying the
validity of a packet. However, in most organizations, this is unlikely
to be a security issue. Those hitting this issue may see "connection
timeout", "session timeout", or "password verification timeout" errors.
Issue observed on Xyratex FB-H8-SRAY, Intel Windmill, Quanta
Winterfell, and Wiwynn Windmill.
intel20 - This workaround flag will work around several Intel IPMI 2.0
authentication issues. The issues covered include padding of usernames,
and password truncation if the authentication algorithm is HMAC-
MD5-128. Those hitting this issue may see "username invalid", "password
invalid", or "k_g invalid" errors. Issue observed on Intel SE7520AF2
with Intel Server Management Module (Professional Edition).
supermicro20 - This workaround flag will work around several Supermicro
IPMI 2.0 authentication issues on motherboards w/ Peppercon IPMI
firmware. The issues covered include handling invalid length
authentication codes. Those hitting this issue may see "password
invalid" errors. Issue observed on Supermicro H8QME with SIMSO
daughter card. Confirmed fixed on newerver firmware.
sun20 - This workaround flag will work work around several Sun IPMI 2.0
authentication issues. The issues covered include invalid lengthed hash
keys, improperly hashed keys, and invalid cipher suite records. Those
hitting this issue may see "password invalid" or "bmc error" errors.
Issue observed on Sun Fire 4100/4200/4500 with ILOM. This workaround
automatically includes the "opensesspriv" workaround.
opensesspriv - This workaround flag will slightly alter FreeIPMI's IPMI
2.0 connection protocol to workaround an invalid hashing algorithm used
by the remote system. The privilege level sent during the Open Session
stage of an IPMI 2.0 connection is used for hashing keys instead of the
privilege level sent during the RAKP1 connection stage. Those hitting
this issue may see "password invalid", "k_g invalid", or "bad rmcpplus
status code" errors. Issue observed on Sun Fire 4100/4200/4500 with
ILOM, Inventec 5441/Dell Xanadu II, Supermicro X8DTH, Supermicro X8DTG,
Intel S5500WBV/Penguin Relion 700, Intel S2600JF/Appro 512X, and Quanta
QSSC-S4R/Appro GB812X-CN. This workaround is automatically triggered
with the "sun20" workaround.
integritycheckvalue - This workaround flag will work around an invalid
integrity check value during an IPMI 2.0 session establishment when
using Cipher Suite ID 0. The integrity check value should be 0 length,
however the remote motherboard responds with a non-empty field. Those
hitting this issue may see "k_g invalid" errors. Issue observed on
Supermicro X8DTG, Supermicro X8DTU, and Intel S5500WBV/Penguin Relion
700, and Intel S2600JF/Appro 512X.
assumemaxsdrrecordcount - This workaround will inform SDR reading to
stop reading after a known maximum numer of SDR records have been read.
This will work around systems that have mis-implemented SDR reading
functions that. Those hitting this issue may see "SDR record count
invalid" errors. Issue observed on unspecified Inspur motherboard.
malformedack - This workaround flag will ignore malformed PET
acknowledge responses and assume any PET acknowledge response from the
remote machine is valid. It works around remote systems that respond
with PET acknowledge requests with invalid/malformed IPMI payloads.
Those hitting this issue may see "session timeout" errors when
executing a PET acknowledge. Issue observed on Dell Poweredge R610.
No IPMI 1.5 Support - Some motherboards that support IPMI 2.0 have been
found to not support IPMI 1.5. Those hitting this issue may see "ipmi
2.0 unavailable" or "connection timeout" errors. This issue can be
worked around by using IPMI 2.0 instead of IPMI 1.5 by specifying
--driver-type=LAN_2_0. Issue observed on HP Proliant DL 145.
OEM INTERPRETATION
The following motherboards are confirmed to have atleast some support
by the --interpret-oem-data option. While highly probable the OEM data
interpretations would work across other motherboards by the same
manufacturer, there are no guarantees. Some of the motherboards below
may be rebranded by vendors/distributors.
Currently None
EXAMPLES
Interpret a PET using the local SDR cache.
# ipmi-pet 356224 0x44 0x45 0x4c 0x4c 0x50 0x00 0x10 0x59 0x80 0x43
0xb2 0xc0 0x4f 0x33 0x33 0x58 0x00 0x02 0x19 0xe8 0x7e 0x26 0xff 0xff
0x20 0x20 0x04 0x20 0x73 0x18 0x00 0x80 0x01 0xff 0x00 0x00 0x00 0x00
0x00 0x19 0x00 0x00 0x02 0xa2 0x01 0x00 0xc1
Interpret a PET using a remote SDR cache.
# ipmi-pet -h ahost -u myusername -p mypassword 356224 0x44 0x45 0x4c
0x4c 0x50 0x00 0x10 0x59 0x80 0x43 0xb2 0xc0 0x4f 0x33 0x33 0x58 0x00
0x02 0x19 0xe8 0x7e 0x26 0xff 0xff 0x20 0x20 0x04 0x20 0x73 0x18 0x00
0x80 0x01 0xff 0x00 0x00 0x00 0x00 0x00 0x19 0x00 0x00 0x02 0xa2 0x01
0x00 0xc1
Interpret a PET using a previously stored SDR cache.
# ipmi-pet 356224 0x44 0x45 0x4c 0x4c 0x50 0x00 0x10 0x59 0x80 0x43
0xb2 0xc0 0x4f 0x33 0x33 0x58 0x00 0x02 0x19 0xe8 0x7e 0x26 0xff 0xff
0x20 0x20 0x04 0x20 0x73 0x18 0x00 0x80 0x01 0xff 0x00 0x00 0x00 0x00
0x00 0x19 0x00 0x00 0x02 0xa2 0x01 0x00 0xc1
--sdr-cache-file=/tmp/mysdrcache
Instead of outputting trap interpretation, send a PET acknowledge using
the trap data.
# ipmi-pet -h ahost --pet-acknowledge 356224 0x44 0x45 0x4c 0x4c 0x50
0x00 0x10 0x59 0x80 0x43 0xb2 0xc0 0x4f 0x33 0x33 0x58 0x00 0x02 0x19
0xe8 0x7e 0x26 0xff 0xff 0x20 0x20 0x04 0x20 0x73 0x18 0x00 0x80 0x01
0xff 0x00 0x00 0x00 0x00 0x00 0x19 0x00 0x00 0x02 0xa2 0x01 0x00 0xc1
DIAGNOSTICS
Upon successful execution, exit status is 0. On error, exit status is
1.
KNOWN ISSUES
On older operating systems, if you input your username, password, and
other potentially security relevant information on the command line,
this information may be discovered by other users when using tools like
the ps(1) command or looking in the /proc file system. It is generally
more secure to input password information with options like the -P or
-K options. Configuring security relevant information in the FreeIPMI
configuration file would also be an appropriate way to hide this
information.
In order to prevent brute force attacks, some BMCs will temporarily
"lock up" after a number of remote authentication errors. You may need
to wait awhile in order to this temporary "lock up" to pass before you
may authenticate again.
REPORTING BUGS
Report bugs to <freeipmi-users@gnu.org> or <freeipmi-devel@gnu.org>.
COPYRIGHT
Copyright (C) 2011-2015 FreeIPMI Core Team
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
SEE ALSO
freeipmi(7), bmc-info(8), ipmi-config(8), ipmi-sel(8),
freeipmi_interpret_sel.conf(5)
http://www.gnu.org/software/freeipmi/
IPMI-PET version 1.5.1 2016-02-18 IPMI-PET(8)